Can Mathlab solve this

조회 수: 4 (최근 30일)
rob
rob 2013년 9월 3일
댓글: Walter Roberson 2022년 9월 17일
Can Mathlab solve this
x1^2 +2.x1 - 2.x2^2 -5.x2 =5
2.x1^2 -3.x1 +x2^2 +3.x2 =19
  댓글 수: 2
Walter Roberson
Walter Roberson 2013년 9월 3일
You know that has four solutions, right?
Walter Roberson
Walter Roberson 2013년 9월 3일
Please read the guide to tags and retag this question.

댓글을 달려면 로그인하십시오.

답변 (4개)

Thomas
Thomas 2013년 9월 3일
편집: Thomas 2013년 9월 3일
Yes, look in the symbolic math toolbox http://www.mathworks.com/help/symbolic/solve.html
Go to the bottom of the page for examples

Shashank Prasanna
Shashank Prasanna 2013년 9월 3일
You can solve a system of nonlinear equations using FSOLVE:
This will yield numerical solutions for x1 and x2
  댓글 수: 3
rob
rob 2013년 9월 3일
fsolve is all numerical not algabraic
Walter Roberson
Walter Roberson 2013년 9월 3일
Correct, fsolve() is numeric not algebraic. However can you really make use of the algebraic solutions? For example one of the four solutions to the above system has x1 be
-349/140 + (1/5040) * (4860 * (112706532 + 2940 * 1239703701^(1/2))^(1/3) - 6 * (112706532 + 2940 * 1239703701^(1/2))^(2/3) - 754344) / (112706532 + 2940 * 1239703701^(1/2))^(1/3) - (1/90720) * ((4860 * (112706532 + 2940 * 1239703701^(1/2))^(1/3) - 6 * (112706532 + 2940 * 1239703701^(1/2))^(2/3) - 754344)/(112706532 + 2940 * 1239703701^(1/2))^(1/3))^(1/2) * 6^(1/2) * 36^(1/2) * 2^(1/2) * (((810* (112706532 + 2940 * 1239703701^(1/2))^(1/3) + 18^(1/3) * ((9392211 + 245 * 1239703701^(1/2))^2)^(1/3) + 62862) * ((4860 * (112706532 + 2940 * 1239703701^(1/2))^(1/3) - 6 * (112706532 + 2940 * 1239703701^(1/2))^(2/3) - 754344) / (112706532 + 2940 * 1239703701^(1/2))^(1/3))^(1/2) + 1764 * (112706532 + 2940 * 1239703701^(1/2))^(1/3)) * 18^(1/3) * ((112706532 + 2940 * 1239703701^(1/2))^(1/3) / (810 * (112706532 + 2940 * 1239703701^(1/2))^(1/3) - (112706532 + 2940 * 1239703701^(1/2))^(2/3) - 125724))^(1/2) * ((9392211 + 245 * 1239703701^(1/2))^2)^(1/3) * 6^(1/2) / (9392211 + 245 * 1239703701^(1/2)))^(1/2) + (1/30240) * (1620 * (112706532 + 2940 * 1239703701^(1/2))^(1/3) * ((4860 * (112706532 + 2940 * 1239703701^(1/2))^(1/3) - 6 * (112706532 + 2940 * 1239703701^(1/2))^(2/3) - 754344) / (112706532 + 2940 * 1239703701^(1/2))^(1/3))^(1/2) + 2 * ((4860 * (112706532 + 2940 * 1239703701^(1/2))^(1/3) - 6 * (112706532 + 2940 * 1239703701^(1/2))^(2/3) - 754344) / (112706532 + 2940 * 1239703701^(1/2))^(1/3))^(1/2) * 18^(1/3) * ((9392211 + 245 * 1239703701^(1/2))^2)^(1/3) + 125724 * ((4860 * (112706532 + 2940 * 1239703701^(1/2))^(1/3) - 6 * (112706532 + 2940 * 1239703701^(1/2))^(2/3) - 754344) / (112706532 + 2940 * 1239703701^(1/2))^(1/3))^(1/2) + 3528 * (112706532 + 2940 * 1239703701^(1/2))^(1/3)) * 6^(1/2) * ((112706532 + 2940 * 1239703701^(1/2))^(1/3) / (810 * (112706532 + 2940 * 1239703701^(1/2))^(1/3) - (112706532 + 2940 * 1239703701^(1/2))^(2/3) - 125724))^(1/2) * 18^(1/3) * ((9392211 + 245 * 1239703701^(1/2))^2)^(1/3) / (9392211 + 245 * 1239703701^(1/2))
Would your work seriously be affected if all those 112706532 where 112706533 instead? (That would make a difference in the 6th decimal place.)

댓글을 달려면 로그인하십시오.


Roger Stafford
Roger Stafford 2013년 9월 3일
It is useful to know how to solve such equations by hand rather than always depending on matlab. The trick is to eliminate either the x1^2 term or the x2^2 term by combining the equations appropriately. If we double the second equation and then add the equations, we get
5*x1^2-4*x1+x2 = 43
which can be solved for x2
x2 = -5*x1^2+4*x1+43
You can then substitute this value of x2 into either one of the original equations and get a fourth degree polynomial equation in x1. The four roots of this can be obtained with matlab's 'roots' program (we need matlab after all) and then corresponding values of x2 from these with the above equation.
  댓글 수: 7
rob
rob 2013년 9월 4일
I dont understand exactly I think lineair dependence is solvable like a +b +c =3 2a +2b - c =5 -a +b -3c = 9
but i was investigating only where the a b and c have a quadratic So a thousend by a thousend has a thousend unkowns of a and a^2 for all i know this is unsolvable and only in fsolve with numerical math.
Walter Roberson
Walter Roberson 2013년 9월 4일
편집: Walter Roberson 2013년 9월 4일
Suppose you had
a = b^2 + d
b = c^2
c = d^2
then a = d^8 + d, and that has no closed-form solution for d in terms of a. Therefore the generalized 3 x 3 or larger is not always resolvable to algebraic solutions. However, if the forms of the equations are constrained, so that one was not working with the generalized form, then it might be possible to find algebraic solutions; that would vary with the exact constraints.

댓글을 달려면 로그인하십시오.


Edwin
Edwin 2022년 9월 17일
solve('6/(1-x^2) =5/(1+x) - 3/(1-x)')
Check for incorrect argument data type or missing argument in call to function 'solve'.
  댓글 수: 1
Walter Roberson
Walter Roberson 2022년 9월 17일
syms x
solve(6/(1-x^2) == 5/(1+x) - 3/(1-x))
ans = 
Historically, solve() used to support character vectors like you show, but that changed around R2017b or so.

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Equation Solving에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by