Transformation of a MATLAB Function.

조회 수: 4 (최근 30일)
Fawad Farooq Ashraf
Fawad Farooq Ashraf 2021년 3월 13일
편집: Fawad Farooq Ashraf 2021년 3월 14일
I have a function defined as,
f_xw = @(x,w) [3.*x(1) - x(1).^2/7 + w(1);
-2.*x(2) + w(2)];
I want to transform this from x coordinate system to \eta coordinate system which would look like
f_etaw = @(eta,w) [3.*(c1+G1*eta) - (c1+G1*eta).^2/7 + w(1);...
-2.*(c2+G2*eta) + w(2)];
where i define eta as symbolic variables
eta = sym('eta',[2 1]);
and c's are constants numbers (1x1) and G's are constant row vectors (1x2) which i can define globally.
Is there a way to do this transformation using matlabFunction command? And can this transformation be made general for all functions with n states?

채택된 답변

Steven Lord
Steven Lord 2021년 3월 13일
f_xw = @(x,w) [3.*x(1) - x(1).^2/7 + w(1);
-2.*x(2) + w(2)];
f_etaw = @(eta,w) [3.*(c1+G1*eta) - (c1+G1*eta).^2/7 + w(1);...
-2.*(c2+G2*eta) + w(2)];
So instead of x(1) you want to use c1+G1*eta and instead of x(2) you want to use c2+G2*eta?
% assuming c1, c2, G1, and G2 already exist
f_etaw = @(eta, w) f_xw([c1+G1*eta, c2+G2*eta], w);
And can this transformation be made general for all functions with n states?
Assuming c and G are vectors that are the same size as the x input with which f_xw expects to be called:
% assuming c and G already exist
f_etaw = @(eta, w) f_xw(c+G*eta, w);
  댓글 수: 2
Fawad Farooq Ashraf
Fawad Farooq Ashraf 2021년 3월 14일
Thank you so much. It works.
I still need a bit of help here.
After I get f_etaw using this. Considering this case, my original function had 2 equations. Can I get two separate function handles for each of them. I'll try to explain this.
I have a function handle which has two equations (the number of equations may vary, thats why I wanted to generalize it)
f_xw = @(x,w) [3.*x(1) - x(1).^2/7 + w(1);
-2.*x(2) + w(2)];
Basically I want separate function handles for each of the equations. I was unable to extract them in this form so I manually transformed them as used a cell array as
f_etaw = {@(eta,w) 3.*(c1+G1*eta) - (c1+G1*eta).^2/7 + w(1);
@(eta,w) -2.*(c2+G2*eta) + w(2)};
This way I can use my eqiuations as f_etaw{1,1} and f_etaw{2,1}. I wanted to generalize this for any example with as many states/equations as required.
Fawad Farooq Ashraf
Fawad Farooq Ashraf 2021년 3월 14일
편집: Fawad Farooq Ashraf 2021년 3월 14일
I've tried to do this in the following way. Is this correct?
f_xw = @(x,w) [3.*x(1) - x(1).^2/7 + w(1);
-2.*x(2) + w(2)];
c, G and w are defined. Here I removed w from f_etaw. I want to fix w by defining it globally.
eta = sym('eta',[size(G,2) 1]);
f_eta = @(eta) f_xw(c+G*eta,w);
f_eta = f_etaw(eta);
f_etas = cell(1,size(f_eta,1));
for m = 1:size(f_eta,1)
f_etas{m} = matlabFunction(f_eta(m,:),'Vars',{eta});
end
Does this seem alright?

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Matrix Indexing에 대해 자세히 알아보기

제품


릴리스

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by