Overfitting or what is the problem

조회 수: 2 (최근 30일)
Matthew Clark
Matthew Clark 2019년 3월 23일
댓글: Matthew Clark 2019년 3월 26일
I am training my NN getting good results (I think) se attached pictures, but if I test my NN for new datas results are very poor. Here is my code
x = inMatix; %19x105100 two year dataset
t = targetData; %1x105100 hist el.load
trainFcn = 'trainlm'; % Levenberg-Marquardt backpropagation.
net=feedforwardnet(20,trainFcn);
%net = fitnet(hiddenLayerSize,trainFcn);
% Setup Division of Data for Training, Validation, Testing
% For a list of all data division functions type: help nndivision
net.divideFcn = 'dividerand'; % Divide data randomly
net.divideMode = 'sample'; % Divide up every sample
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;
net.trainParam.epochs = 1000;
net.trainParam.lr = 0.001;
net.performFcn = 'mse'; % Mean Squared Error
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ...
'plotregression', 'plotfit'};
% Train the Network
[net,tr] = train(net,x,t);
% Test the Network
y = net(x);
e = gsubtract(t,y);
performance = perform(net,t,y)
% Recalculate Training, Validation and Test Performance
trainTargets = t .* tr.trainMask{1};
valTargets = t .* tr.valMask{1};
testTargets = t .* tr.testMask{1};
trainPerformance = perform(net,trainTargets,y)
valPerformance = perform(net,valTargets,y)
testPerformance = perform(net,testTargets,y)
  댓글 수: 10
Matthew Clark
Matthew Clark 2019년 3월 26일
Help me to interpret this results, please Mr. Heath
N = 2400
Neq = 2400
M = 4559
M = 4559
M = 4559
M = 4559
M = 4559
sigthresh95 = 0.0300
plt = 1
FD = 1×2
1 2
NFD = 2
LDB = 2
Ns = 2398
Nseq = 2398
Hub = 599
Hmax = 59
Hmin = 0
dH = 1
Ntrials = 10
j = 0
j = 1
Nw = 3
Ndof = 2395
num of significant lags 1758
sigthresh.PNG
Matthew Clark
Matthew Clark 2019년 3월 26일
10 days dataset, with 10 min sampling good predictors are at 144 distance ? it mean my delay will be 144?
dss.PNG

댓글을 달려면 로그인하십시오.

답변 (0개)

카테고리

Help CenterFile Exchange에서 Sequence and Numeric Feature Data Workflows에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by