unstable ode45 solution
조회 수: 29 (최근 30일)
이전 댓글 표시
I am currently modeling Hodgkin-Huxley equations. I give external input to the model at specific times and see whether action potential occurs. The inputs are short square waves (0.3 ms wide). However, my ode45 gave me nan values that depended on the time interval between my inputs. For example, having 100 ms between two inputs gave me two action potentials, but having 70 ms between two inputs gave me nan for second action potential. I noticed that when nan values come up, the dy(1) value for the ode function increases in magnitude that is outside the realistic range of the model (like around 10^17 or more). This might be more of stable/unstable equation problem but nevertheless I would appreciate any help the community gives.
Here's the plots for the two situations I mentioned above:
This has 100ms interval.
This has 70ms interval.
Here's the wrapper code:
% initial
Vm0 = -30;
n0 = 0.2;
m0 = 0.1;
h0 = 0.1;
currentamp = 20;
currentamp2 = 2.2*currentamp;
period = 100;
%run HH model ode
dt = [0 2000];
y0 = [Vm0 n0 m0 h0];
[t,y]=ode45(@(t,y) hodgkinhuxley(t,y,[currentamp currentamp2 period]),dt,y0);
% HH parameters
n = y(:,2);
m = y(:,3);
h = y(:,4);
gNa = 1;
gK = 1;
INa = gNa*m.^3.*h;
IK = gK*n.^4;
% figure;
hold on;
plot(t,y(:,1));
plot(t,currentamp*(t>=100 & t<=100.3)+currentamp2*(t>=100.3+period & t<=100.3+period+0.3));
title('H-H model');
xlabel('Time (ms)');
ylabel('Voltage (mV)/Current (mA)');
xlim([80 300]);
legend('Potential','Input current');
hold off;
Here's the ode function:
function dy = hodgkinhuxley( t, y, input)
% parameters from ermentrout ch1
Vm = y(1,1); % mV
n = y(2,1);
m = y(3,1);
h = y(4,1);
period = input(3);
if t>=100 && t<=100.3
inputI = input(1);
elseif t>=100.3+period && t<=100.3+period+0.3
inputI = input(2);
else
inputI = 0;
end
gNa = 120; % mS/cm^2 from handout
gK = 36; % mS/cm^2 from handout
gL = 0.3; % mS/cm^2 from handout
ENa = 50; % mV
EK = -77; % mV
EL = -50; % mV from handout
Cm = 1; % microF/cm^2
alpha_n = 0.01*(Vm+55)/(1-exp(-(Vm+55)/10));
beta_n = 0.125*exp(-(Vm+65)/80);
alpha_m = 0.1*(Vm+40)/(1-exp(-(Vm+40)/10));
beta_m = 4*exp(-(Vm+65)/18);
alpha_h = 0.07*exp(-(Vm+65)/20);
beta_h = 1/(1+exp(-(Vm+35)/10));
dVm = (1/Cm)*(-gNa*m^3*h*(Vm-ENa)...
-gK*n^4*(Vm-EK)-gL*(Vm-EL)+inputI);
dn = alpha_n*(1-n)-beta_n*n;
dm = alpha_m*(1-m)-beta_m*m;
dh = alpha_h*(1-h)-beta_h*h;
dy = [dVm; dn; dm; dh];
end
댓글 수: 0
채택된 답변
추가 답변 (1개)
Jan
2016년 12월 13일
Your function to be integrated is not differentiable. Matlab's ODE integrators are not designed to handles this. See http://www.mathworks.com/matlabcentral/answers/59582#answer_72047 . Restricting the stepsize is not a reliable solution but only to split the integration to intervals with smooth values.
댓글 수: 1
Tracey Rochester
2019년 1월 8일
Hi, your answer and link were too advanced for me Jan. Can you simplify please? Or provide guidance on how to achieve it, rather than how not to? Many thanks.
참고 항목
카테고리
Help Center 및 File Exchange에서 Ordinary Differential Equations에 대해 자세히 알아보기
제품
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!