Fit scatter plot with a curve
조회 수: 26 (최근 30일)
이전 댓글 표시
I'm trying to fit the following data (here plotted using scatter)
with a curve so that the result will be something like this
I tried with polyfit and polyval but failed, so probably I used them in the wrong way, any help?
x = [0.2337;0.296;0.3071;0.4208;0.2055;0.9597;0.8683;0.243;0.3363;0.2793;0.5292;0.2471;0.2282;0.4774;1.0392;0.4361;0.1367;0.2952;0.1983;1.0468;0.906;0.9578;0.5368;0.5956;0.8616;0.1641;0.1312;1.0381;0.2361;0.4668;0.7477;0.5303;1.367;1.0894;1.2836;0.2487;0.5869;0.8664;0.3446;0.5062;0.7245;1.3289;0.4958;1.6644;0.2826;0.6825;0.103;0.3205;0.4456;0.1835;0.2622;0.0673;0.4219;0.639;0.7599;0.2172;0.5491;0.6694;0.3774;1.1869;0.7206;0.9669;0.0672;0.6705;0.1681;1.5364;0.3779;0.3483;0.5097;1.7493;0.5388;0.4481;0.2657;1.2815;0.9019;0.9402;0.12;0.4465;1.0316;0.5493;1.0942;0.2359;0.1906;2.1019;0.9408;0.8557;0.1598;0.9746;0.3083;1.0001;0.9645;0.498;0.0614;0.1956;0.7869;1.2872;0.4342;0.0462];
y = [0.0136;0.0075;0.0089;0.0088;0.0104;0.0153;0.0024;0.01;0.0047;0.0137;0.0026;0.0094;0.0093;0.0044;0.013;0.0018;0.0154;0.0058;0.0107;0.011;0.0019;0.013;0.0078;0.0071;0.0018;0.0204;0.0179;0.007;0.0119;0.0013;0.0142;0.022;0.0182;0.0054;0.0434;0.0079;0.0008;0.0066;0.0039;0.0009;0.0018;0.0199;0.0107;0.0326;0.0092;0.0013;0.0194;0.0057;0.0471;0.0133;0.0139;0.0255;0.016;0.0016;0.0013;0.0093;0.0011;0.0014;0.0233;0.0217;0.0003;0.004;0.0251;0.0049;0.0133;0.0316;0.0029;0.0082;0.0156;0.0476;0.0013;0.0016;0.0079;0.0307;0.013;0.012;0.0239;0.0134;0.0203;0.0007;0.013;0.009;0.0146;0.0556;0.0221;0.0027;0.0159;0.0037;0.0053;0.0035;0.0076;0.0008;0.0291;0.0162;0.017;0.0418;0.0146;0.033];
f = polyfit(x, y, 5);
v = polyval(f, x);
plot(x,y,'o', x,v,'-')
댓글 수: 0
채택된 답변
Alan Stevens
2021년 12월 2일
More like ths?
x = [0.2337;0.296;0.3071;0.4208;0.2055;0.9597;0.8683;0.243;0.3363;0.2793;0.5292;0.2471;0.2282;0.4774;1.0392;0.4361;0.1367;0.2952;0.1983;1.0468;0.906;0.9578;0.5368;0.5956;0.8616;0.1641;0.1312;1.0381;0.2361;0.4668;0.7477;0.5303;1.367;1.0894;1.2836;0.2487;0.5869;0.8664;0.3446;0.5062;0.7245;1.3289;0.4958;1.6644;0.2826;0.6825;0.103;0.3205;0.4456;0.1835;0.2622;0.0673;0.4219;0.639;0.7599;0.2172;0.5491;0.6694;0.3774;1.1869;0.7206;0.9669;0.0672;0.6705;0.1681;1.5364;0.3779;0.3483;0.5097;1.7493;0.5388;0.4481;0.2657;1.2815;0.9019;0.9402;0.12;0.4465;1.0316;0.5493;1.0942;0.2359;0.1906;2.1019;0.9408;0.8557;0.1598;0.9746;0.3083;1.0001;0.9645;0.498;0.0614;0.1956;0.7869;1.2872;0.4342;0.0462];
y = [0.0136;0.0075;0.0089;0.0088;0.0104;0.0153;0.0024;0.01;0.0047;0.0137;0.0026;0.0094;0.0093;0.0044;0.013;0.0018;0.0154;0.0058;0.0107;0.011;0.0019;0.013;0.0078;0.0071;0.0018;0.0204;0.0179;0.007;0.0119;0.0013;0.0142;0.022;0.0182;0.0054;0.0434;0.0079;0.0008;0.0066;0.0039;0.0009;0.0018;0.0199;0.0107;0.0326;0.0092;0.0013;0.0194;0.0057;0.0471;0.0133;0.0139;0.0255;0.016;0.0016;0.0013;0.0093;0.0011;0.0014;0.0233;0.0217;0.0003;0.004;0.0251;0.0049;0.0133;0.0316;0.0029;0.0082;0.0156;0.0476;0.0013;0.0016;0.0079;0.0307;0.013;0.012;0.0239;0.0134;0.0203;0.0007;0.013;0.009;0.0146;0.0556;0.0221;0.0027;0.0159;0.0037;0.0053;0.0035;0.0076;0.0008;0.0291;0.0162;0.017;0.0418;0.0146;0.033];
f = polyfit(x, y, 5);
xx = 0:0.1:2.5; %%%%%%%%%%%%%%%%%%%%%%
v = polyval(f, xx); %%%%%%%%%%%%%%%%%%%
plot(x,y,'o', xx,v,'-')
댓글 수: 3
Alan Stevens
2021년 12월 2일
You could split it into regions. For example:
x = [0.2337;0.296;0.3071;0.4208;0.2055;0.9597;0.8683;0.243;0.3363;0.2793;0.5292;0.2471;0.2282;0.4774;1.0392;0.4361;0.1367;0.2952;0.1983;1.0468;0.906;0.9578;0.5368;0.5956;0.8616;0.1641;0.1312;1.0381;0.2361;0.4668;0.7477;0.5303;1.367;1.0894;1.2836;0.2487;0.5869;0.8664;0.3446;0.5062;0.7245;1.3289;0.4958;1.6644;0.2826;0.6825;0.103;0.3205;0.4456;0.1835;0.2622;0.0673;0.4219;0.639;0.7599;0.2172;0.5491;0.6694;0.3774;1.1869;0.7206;0.9669;0.0672;0.6705;0.1681;1.5364;0.3779;0.3483;0.5097;1.7493;0.5388;0.4481;0.2657;1.2815;0.9019;0.9402;0.12;0.4465;1.0316;0.5493;1.0942;0.2359;0.1906;2.1019;0.9408;0.8557;0.1598;0.9746;0.3083;1.0001;0.9645;0.498;0.0614;0.1956;0.7869;1.2872;0.4342;0.0462];
y = [0.0136;0.0075;0.0089;0.0088;0.0104;0.0153;0.0024;0.01;0.0047;0.0137;0.0026;0.0094;0.0093;0.0044;0.013;0.0018;0.0154;0.0058;0.0107;0.011;0.0019;0.013;0.0078;0.0071;0.0018;0.0204;0.0179;0.007;0.0119;0.0013;0.0142;0.022;0.0182;0.0054;0.0434;0.0079;0.0008;0.0066;0.0039;0.0009;0.0018;0.0199;0.0107;0.0326;0.0092;0.0013;0.0194;0.0057;0.0471;0.0133;0.0139;0.0255;0.016;0.0016;0.0013;0.0093;0.0011;0.0014;0.0233;0.0217;0.0003;0.004;0.0251;0.0049;0.0133;0.0316;0.0029;0.0082;0.0156;0.0476;0.0013;0.0016;0.0079;0.0307;0.013;0.012;0.0239;0.0134;0.0203;0.0007;0.013;0.009;0.0146;0.0556;0.0221;0.0027;0.0159;0.0037;0.0053;0.0035;0.0076;0.0008;0.0291;0.0162;0.017;0.0418;0.0146;0.033];
xbreak = 1.02; % change value as desired
n = size(find(x<=xbreak),1); % Number of values <= xbreak
z = [x y]; % Combine for sorting
z = sortrows(z); % Sort rows based on first column of z, namely the x values
% Separate data into two sets
xlo = z(1:n,1); ylo = z(1:n,2);
xhi = z(n+1:end,1); yhi = z(n+1:end,2);
plot(xlo,ylo,'o',xhi,yhi,'s'),grid % plot data
hold on
% Fit separate curves to each set
flo = polyfit(xlo,ylo,2);
fhi = polyfit(xhi,yhi,2);
% Construct fitted curves
xxlo = 0:0.1:xbreak;
xxhi = xbreak:0.1:2.5;
vlo = polyval(flo, xxlo);
vhi = polyval(fhi, xxhi);
% plot fitted curves on top of data
plot(xxlo,vlo,xxhi,vhi)
Only you can decide if the results make sense!
추가 답변 (1개)
Image Analyst
2021년 12월 2일
Not sure if the scattered data is legitimate or noise. The bottom of the data looks like a nice polynomial. So if you want to fit just the highly clustered points along the bottom and ignore some of the outliers in the middle, you could try fitPolynomialRANSAC if you have the Computer Vision Toolbox.
참고 항목
카테고리
Help Center 및 File Exchange에서 EEG/MEG/ECoG에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!