# How to design NN architecture to achieve max R2

조회 수: 1 (최근 30일)
Sarah Mahmood 2013년 11월 10일
댓글: Sarah Mahmood 2013년 11월 13일
Hi all
I'm trying to design a NN for spoken word recognition and classification into two classes i.e Yes class and No class, I have already built a network but the result obtained was poor. I did a research on how to improve NN performance and I found posts form matlab answers regarding this issue explaining how to improve performance yet there still some things ambiguous if any one can help answering my question regarding the code below it would be much helpful for me
clc
yes2=1*ones(1,199);
no2=zeros(1,208);
InData=[yesClass2 ;noClass2];
InData=InData';
TarData=[yes2 no2];
xtrn=InData;
ttrn=TarData;
[ I N ] = size( xtrn ) % [ 5 407 ]
[ O N ] = size( ttrn ) % [ 1 407 ]
MSEtrn00 = mean(var(ttrn',1))
MSEgoal = MSEtrn00/100
rng(0)
for h = 1:1:40 % e.g., 1:10 No. of Hidden nodes
for n = 1: 10 % e.g., 1:10 No. of Ntrials
net = patternnet(h);
net.divideFcn = 'dividetrain';
net.trainParam.goal = MSEgoal;
[net tr ] = train(net,xtrn,ttrn);
bestepoch = tr.best_epoch;
R2(n,h) = 1 - tr.perf(bestepoch)/MSEtrn00;
end
end
R2 = R2
my questions are :- 1- when I increased the suggested no. of hidden nodes from 10 to 40, R2 increased why ?
2- through reading I found that R2 recommended to be ~=0.99 and what I got max(R2)=0.88 when I increase no. of hidden nodes, is what I did correct ?
3- R2 matrix sizes should be 10 rows and 40 columns, why am I getting R2(20,40) then ?
4- how to know which no. of hidden nodes achieve the required R2 ~=0.99 (i.e by using nodes=find(max(R2))) ?
##### 댓글 수: 2없음 표시없음 숨기기
Sarah Mahmood 2013년 11월 10일
5- how can I interpret the obtained results listed below ??
MSEtrn00 =
0.2499
MSEgoal =
0.0025
8.3293e-04
R2 =
Columns 1 through 7
0.0510 0.0262 0.1469 0.2012 0.2590 0.2515 0.3269
0.0512 0.1327 0.1762 0.2074 0.2243 0.2349 0.2524
0.0511 0.1339 0.1768 0.1702 0.2342 0.2510 0.2898
0.0513 0.1331 0.1788 0.1989 0.2793 0.2647 0.3156
0.0512 0.1329 0.1788 0.1944 0.2459 0.2558 0.3497
0.0446 0.0513 0.1794 0.1971 0.1987 0.2600 0.3408
0.0511 0.1332 0.1654 0.1660 0.2008 0.2442 0.2726
0.0512 0.0719 0.1219 0.1657 0.2238 0.2955 0.2607
0.0512 0.0511 0.1325 0.2079 0.2388 0.2491 0.3478
0.0511 0.1333 0.1341 0.1806 0.2245 0.2521 0.3092
0.0514 0.1329 0.1244 0.1936 0.2093 0.2483 0.2559
0.0507 0.1324 0.0773 0.1616 0.2043 0.2437 0.2503
0.0511 0.1333 0.1667 0.1645 0.2104 0.2614 0.3098
0.0253 0.0723 0.1478 0.1798 0.2244 0.2907 0.2552
0.0272 0.0512 0.1650 0.1994 0.2059 0.2634 0.2720
0.0513 0.1333 0.0545 0.1365 0.2094 0.2471 0.2854
0.0513 0.1336 0.0663 0.2035 0.1769 0.2304 0.2642
0.0511 0.0255 0.1664 0.1723 0.1960 0.2566 0.2324
0.0245 0.0741 0.0509 0.2125 0.2370 0.2264 0.2929
0.0513 0.0512 0.1648 0.2095 0.1698 0.2283 0.2812
Columns 8 through 14
0.3784 0.3783 0.3747 0.4760 0.4149 0.4594 0.4885
0.2925 0.3198 0.3889 0.4211 0.4723 0.4767 0.5240
0.3418 0.3874 0.3622 0.4354 0.4703 0.4173 0.5099
0.3138 0.3318 0.3811 0.4656 0.4606 0.4303 0.4952
0.2734 0.3312 0.3945 0.3368 0.4359 0.4346 0.5859
0.2986 0.4062 0.3383 0.4174 0.4243 0.4815 0.5082
0.3187 0.3804 0.3317 0.4319 0.4093 0.4080 0.5447
0.3073 0.3280 0.3325 0.4074 0.3839 0.4822 0.4074
0.3540 0.3158 0.4258 0.4527 0.4601 0.5131 0.5224
0.2621 0.3770 0.4247 0.4635 0.4714 0.5381 0.5243
0.3410 0.3455 0.3218 0 0 0 0
0.3139 0.3130 0.3369 0 0 0 0
0.3104 0.3765 0.4575 0 0 0 0
0.2807 0.3682 0.4168 0 0 0 0
0.3090 0.3893 0.4093 0 0 0 0
0.3118 0.3101 0.3461 0 0 0 0
0.3389 0.3421 0.4232 0 0 0 0
0.3371 0.3740 0.3875 0 0 0 0
0.3554 0.3531 0.4084 0 0 0 0
0.3472 0.3493 0.3788 0 0 0 0
Columns 15 through 21
0.5905 0.5428 0.5753 0.5791 0.6495 0.6433 0.7268
0.6183 0.5146 0.5238 0.6557 0.6618 0.7255 0.7286
0.5395 0.5937 0.5310 0.7010 0.5618 0.7205 0.5937
0.5999 0.5265 0.5948 0.6045 0.5992 0.6281 0.7204
0.5432 0.6031 0.5960 0.5978 0.5614 0.5618 0.6998
0.5129 0.6096 0.6008 0.5568 0.6701 0.6588 0.5948
0.5212 0.6177 0.5623 0.5323 0.6203 0.7217 0.7405
0.5804 0.5350 0.6387 0.6025 0.7043 0.7178 0.7157
0.5321 0.6094 0.5449 0.6150 0.6205 0.5939 0.7428
0.5778 0.4987 0.6760 0.6666 0.6298 0.7097 0.7101
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
Columns 22 through 28
0.7289 0.6744 0.7434 0.7084 0.7591 0.7182 0.7268
0.6855 0.7640 0.7022 0.7376 0.7100 0.7982 0.8380
0.7521 0.6881 0.7326 0.7402 0.7328 0.7832 0.7850
0.6875 0.7640 0.6874 0.7313 0.7043 0.7797 0.8231
0.7912 0.7063 0.7069 0.7017 0.7132 0.8154 0.8107
0.7225 0.7071 0.6893 0.7007 0.7755 0.7330 0.7820
0.7337 0.7061 0.7649 0.7184 0.7447 0.7202 0.7951
0.5491 0.6918 0.7493 0.7129 0.7601 0.7164 0.7741
0.6722 0.7637 0.7482 0.7137 0.7180 0.7129 0.7715
0.7427 0.6690 0.7211 0.7907 0.6955 0.7415 0.8020
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
Columns 29 through 35
0.8056 0.8171 0.7454 0.7711 0.8020 0.8318 0.8357
0.8043 0.8203 0.7821 0.7828 0.8373 0.7130 0.8296
0.7682 0.8111 0.7910 0.7613 0.8712 0.8289 0.7823
0.7227 0.7522 0.8514 0.8166 0.7888 0.7716 0.7622
0.7819 0.7796 0.7914 0.7827 0.7823 0.7873 0.7919
0.7893 0.7819 0.8017 0.7635 0.8405 0.8690 0.7882
0.7596 0.7138 0.7942 0.7922 0.8309 0.8403 0.7514
0.6935 0.8133 0.8022 0.7424 0.7927 0.7680 0.8517
0.7834 0.7512 0.8106 0.7422 0.7998 0.7821 0.7719
0.7989 0.7681 0.8012 0.7716 0.7964 0.8116 0.8403
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
Columns 36 through 40
0.8609 0.8221 0.8516 0.8126 0.8381
0.8207 0.8309 0.8559 0.7732 0.8413
0.7633 0.8514 0.8414 0.8019 0.8517
0.7524 0.7995 0.7825 0.8223 0.8222
0.7915 0.7709 0.8112 0.7723 0.7926
0.7818 0.8219 0.8378 0.7339 0.8125
0.7433 0.7922 0.7632 0.8121 0.8409
0.7726 0.7909 0.8209 0.8800 0.8124
0.8309 0.8217 0.8295 0.8780 0.6935
0.7912 0.7821 0.7926 0.8317 0.8221
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
>> x=max(R2)
x =
Columns 1 through 7
0.0514 0.1339 0.1794 0.2125 0.2793 0.2955 0.3497
Columns 8 through 14
0.3784 0.4062 0.4575 0.4760 0.4723 0.5381 0.5859
Columns 15 through 21
0.6183 0.6177 0.6760 0.7010 0.7043 0.7255 0.7428
Columns 22 through 28
0.7912 0.7640 0.7649 0.7907 0.7755 0.8154 0.8380
Columns 29 through 35
0.8056 0.8203 0.8514 0.8166 0.8712 0.8690 0.8517
Columns 36 through 40
0.8609 0.8514 0.8559 0.8800 0.8517
Sarah Mahmood 2013년 11월 13일
I'm getting R2=0.93 after many tests, is there anyone can help me on how to achieve R2~=0.99 ?? is it a must that R2~=0.99 ?

댓글을 달려면 로그인하십시오.

### 카테고리

Help CenterFile Exchange에서 Sequence and Numeric Feature Data Workflows에 대해 자세히 알아보기

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by