coefTest
Syntax
Description
Examples
Load the fisheriris data set.
load fisheririsThe column vector species contains iris flowers of three different species: setosa, versicolor, and virginica. The matrix meas contains four types of measurements for the flowers: the length and width of sepals and petals in centimeters.
Create a table from the iris measurements and species data by using the array2table function.
tbl = array2table(meas,... VariableNames=["SepalLength","SepalWidth","PetalLength","PetalWidth"]); tbl.Species = species;
Fit a multinomial regression model using the petal measurements as the predictor data and the species as the response data.
mdl = fitmnr(tbl,"Species ~ PetalLength + PetalWidth^2")mdl =
Multinomial regression with nominal responses
Value SE tStat pValue
_______ ______ _______ __________
(Intercept_setosa) 136.9 12.587 10.876 1.4933e-27
PetalLength_setosa -17.351 7.0021 -2.478 0.013211
PetalWidth_setosa -77.383 24.06 -3.2163 0.0012987
PetalWidth^2_setosa -24.719 8.3324 -2.9666 0.0030111
(Intercept_versicolor) 8.2731 14.489 0.571 0.568
PetalLength_versicolor -5.7089 2.0638 -2.7662 0.0056709
PetalWidth_versicolor 35.208 21.97 1.6026 0.10903
PetalWidth^2_versicolor -14.041 7.1653 -1.9596 0.050037
150 observations, 292 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 309.3988, p-value = 7.9151e-64
mdl is a multinomial regression model object that contains the results of the fitting a nominal multinomial regression model to the data. The chi-square statistic and p-value correspond to the null hypothesis that the fitted model does not outperform a degenerate model consisting of only an intercept term. The large p-value indicates that not enough evidence exists to reject the null hypothesis.
Perform an F-test to test the null hypothesis that all coefficients, except the intercept term, are zero. Use the default 95% significance level.
p = coefTest(mdl)
p = 3.5512e-133
The small p-value in the output indicates that enough evidence exists to reject the null hypothesis that all coefficients are zero. Enough evidence exists to conclude that at least one of the fitted model coefficients is statistically significant at the 95% significance level.
Load the carsmall data set.
load carsmallThe variables Acceleration, Weight, and Model_Year contain data for car acceleration, weight, and model year, respectively. The variable MPG contains car mileage data in miles per gallon (MPG).
Sort the data in MPG into four response categories by using the discretize function.
MPG = discretize(MPG,[9 19 29 39 48]); tbl = table(MPG,Acceleration,Weight,Model_Year);
Fit a multinomial regression model of the car mileage as a function of the acceleration, weight, and model year.
mdl = fitmnr(tbl,"MPG ~ Acceleration + Model_Year + Weight",CategoricalPredictors="Model_Year")
mdl =
Multinomial regression with nominal responses
Value SE tStat pValue
________ _________ _______ ___________
(Intercept_1) 154.38 15.697 9.835 7.9576e-23
Acceleration_1 -11.31 0.53323 -21.21 7.7405e-100
Weight_1 0.098347 0.0034745 28.306 2.9244e-176
Model_Year_76_1 182.33 4.5868 39.75 0
Model_Year_82_1 -1690.4 4.6231 -365.64 0
(Intercept_2) 177.87 14.211 12.516 6.0891e-36
Acceleration_2 -11.28 0.48884 -23.076 8.1522e-118
Weight_2 0.090009 0.0030349 29.658 2.6661e-193
Model_Year_76_2 187.19 4.2373 44.176 0
Model_Year_82_2 -136.5 3.4781 -39.244 0
(Intercept_3) 103.66 14.991 6.9146 4.6928e-12
Acceleration_3 -11.359 0.48805 -23.274 8.2157e-120
Weight_3 0.080071 0.0033652 23.794 3.8879e-125
Model_Year_76_3 283.31 4.7309 59.885 0
Model_Year_82_3 -34.727 4.0878 -8.4953 1.9743e-17
94 observations, 267 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 169.6193, p-value = 5.7114e-30
mdl is a multinomial regression model object that contains the results of fitting a nominal multinomial regression model to the data. By default, the fourth response category is the reference category. Each row of the table output corresponds to the coefficient of the model term in the first column. The tStat and pValue columns contain the t-statistics and p-values, respectively, for the null hypothesis that the corresponding coefficient is zero. The small p-values for the Model_Year terms indicate that the model year has a statistically significant effect on mdl. For example, the p-value for the term Model_Year_76_2 indicates that a car being manufactured in 1976 has a statistically significant effect on , where is the ith category probability.
You can use a numeric index matrix to investigate whether a group of coefficients contains a coefficient that is statistically significant. Use a numeric index matrix to test the null hypothesis that all coefficients corresponding to the Model_Year terms are zero.
idx_Model_Year = [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0;... 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0;... 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0;... 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0;... 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0;... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1;... ]; [p_Model_Year,F_Model_Year,r_Model_Year] = coefTest(mdl,idx_Model_Year)
p_Model_Year = 0
F_Model_Year = 4.8985e+04
r_Model_Year = 6
The returned p-value indicates that at least one of the category coefficients corresponding to Model_Year is statistically different from zero. This result is consistent with the small p-value for each of the Model_Term coefficients.
Input Arguments
Multinomial regression model object, specified as a MultinomialRegression model object created with the fitmnr
function.
Hypothesis matrix, specified as a full-rank numeric index matrix of size r-by-s, where r is the number of linear combinations of coefficients being tested, and s is the total number of coefficients.
Example: [1 0 0 0 0] tests the first coefficient among five
coefficients.
Data Types: single | double | logical
Output Arguments
p-value for the F-test, returned as a numeric value in the range [0,1].
Value of the test statistic for the F-test, returned as a numeric value.
Numerator degrees of freedom for the F-test, returned as a
positive integer. The F-statistic has r degrees
of freedom in the numerator and mdl.DFE degrees of freedom in the
denominator.
Version History
Introduced in R2023a
See Also
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)