Create geometry formed by several cubic cells

`gm = multicuboid(W,D,H)`

`gm = multicuboid(W,D,H,Name,Value)`

Create a geometry that consists of three nested cuboids of the same height and include this geometry in a PDE model.

Create the geometry by using the `multicuboid`

function. The resulting geometry consists of three cells.

gm = multicuboid([2 3 5],[4 6 10],3)

gm = DiscreteGeometry with properties: NumCells: 3 NumFaces: 18 NumEdges: 36 NumVertices: 24

Create a PDE model.

model = createpde

model = PDEModel with properties: PDESystemSize: 1 IsTimeDependent: 0 Geometry: [] EquationCoefficients: [] BoundaryConditions: [] InitialConditions: [] Mesh: [] SolverOptions: [1x1 PDESolverOptions]

Include the geometry in the model.

model.Geometry = gm

model = PDEModel with properties: PDESystemSize: 1 IsTimeDependent: 0 Geometry: [1x1 DiscreteGeometry] EquationCoefficients: [] BoundaryConditions: [] InitialConditions: [] Mesh: [] SolverOptions: [1x1 PDESolverOptions]

Plot the geometry.

pdegplot(model,'CellLabels','on','FaceAlpha',0.5)

Create a geometry that consists of four stacked cuboids and include this geometry in a PDE model.

Create the geometry by using the `multicuboid`

function with the `ZOffset`

argument. The resulting geometry consists of four cells stacked on top of each other.

`gm = multicuboid(5,10,[1 2 3 4],'ZOffset',[0 1 3 6])`

gm = DiscreteGeometry with properties: NumCells: 4 NumFaces: 21 NumEdges: 36 NumVertices: 20

Create a PDE model.

model = createpde

model = PDEModel with properties: PDESystemSize: 1 IsTimeDependent: 0 Geometry: [] EquationCoefficients: [] BoundaryConditions: [] InitialConditions: [] Mesh: [] SolverOptions: [1x1 PDESolverOptions]

Include the geometry in the model.

model.Geometry = gm

model = PDEModel with properties: PDESystemSize: 1 IsTimeDependent: 0 Geometry: [1x1 DiscreteGeometry] EquationCoefficients: [] BoundaryConditions: [] InitialConditions: [] Mesh: [] SolverOptions: [1x1 PDESolverOptions]

Plot the geometry.

pdegplot(model,'CellLabels','on','FaceAlpha',0.5)

Create a geometry that consists of a single cuboid and include this geometry in a PDE model.

Use the `multicuboid`

function to create a single cuboid. The resulting geometry consists of one cell.

gm = multicuboid(5,10,7)

gm = DiscreteGeometry with properties: NumCells: 1 NumFaces: 6 NumEdges: 12 NumVertices: 8

Create a PDE model.

model = createpde

model = PDEModel with properties: PDESystemSize: 1 IsTimeDependent: 0 Geometry: [] EquationCoefficients: [] BoundaryConditions: [] InitialConditions: [] Mesh: [] SolverOptions: [1x1 PDESolverOptions]

Include the geometry in the model.

model.Geometry = gm

model = PDEModel with properties: PDESystemSize: 1 IsTimeDependent: 0 Geometry: [1x1 DiscreteGeometry] EquationCoefficients: [] BoundaryConditions: [] InitialConditions: [] Mesh: [] SolverOptions: [1x1 PDESolverOptions]

Plot the geometry.

pdegplot(model,'CellLabels','on')

Create a hollow cube and include it as a geometry in a PDE model.

Create a hollow cube by using the `multicuboid`

function with the `Void`

argument. The resulting geometry consists of one cell.

`gm = multicuboid([6 10],[6 10],10,'Void',[true,false])`

gm = DiscreteGeometry with properties: NumCells: 1 NumFaces: 10 NumEdges: 24 NumVertices: 16

Create a PDE model.

model = createpde

Include the geometry in the model.

model.Geometry = gm

Plot the geometry.

pdegplot(model,'CellLabels','on','FaceAlpha',0.5)

`W`

— Cell widthpositive real number | vector of positive real numbers

Cell width, specified as a positive real number or a vector
of positive real numbers. If `W`

is a vector, then `W(i)`

specifies
the width of the `i`

th cell.

Width `W`

, depth `D`

, and
height `H`

can be scalars or vectors of the same
length. For a combination of scalar and vector inputs, `multicuboid`

replicates
the scalar arguments into vectors of the same length.

All cells in the geometry either must have the same height, or must have both the same width and the same depth.

**Example: **`gm = multicuboid([1 2 3],[2.5 4 5.5],5)`

`D`

— Cell depthpositive real number | vector of positive real numbers

Cell depth, specified as a positive real number or a vector
of positive real numbers. If `D`

is a vector, then `D(i)`

specifies
the depth of the `i`

th cell.

Width `W`

, depth `D`

, and
height `H`

can be scalars or vectors of the same
length. For a combination of scalar and vector inputs, `multicuboid`

replicates
the scalar arguments into vectors of the same length.

All cells in the geometry either must have the same height, or must have both the same width and the same depth.

**Example: **`gm = multicuboid([1 2 3],[2.5 4 5.5],5)`

`H`

— Cell heightpositive real number | vector of positive real numbers

Cell height, specified as a positive real number or a vector
of positive real numbers. If `H`

is a vector, then `H(i)`

specifies
the height of the `i`

th cell.

Width `W`

, depth `D`

,
and height `H`

can be scalars or vectors of the same
length. For a combination of scalar and vector inputs, `multicuboid`

replicates
the scalar arguments into vectors of the same length.

All cells in the geometry either must have the same height, or must have both the same width and the same depth.

**Example: **```
gm = multicuboid(4,5,[1 2 3],'ZOffset',[0 1
3])
```

Specify optional
comma-separated pairs of `Name,Value`

arguments. `Name`

is
the argument name and `Value`

is the corresponding value.
`Name`

must appear inside quotes. You can specify several name and value
pair arguments in any order as
`Name1,Value1,...,NameN,ValueN`

.

`gm = multicuboid([1 2],[1 2],[3 3],'Void',[true,false])`

`'ZOffset'`

— Z offset for each cellvector of

`0`

values (default) | vector of real numbersZ offset for each cell, specified as a vector of real numbers. `ZOffset(i)`

specifies
the Z offset of the `i`

th cell. This vector must
have the same length as the width vector `W`

, depth
vector `D`

, or height vector `H`

.

The `ZOffset`

argument is valid only if the
width and depth are constant for all cells in the geometry.

**Example: **```
gm = multicuboid(20,30,[10 10],'ZOffset',[0
10])
```

**Data Types: **`double`

`'Void'`

— Empty cell indicatorvector of logical

`false`

values (default) | vector of logical `true`

or `false`

valuesEmpty cell indicator, specified as a vector of logical `true`

or `false`

values.
This vector must have the same length as the width vector `W`

,
depth vector `D`

, or the height vector `H`

.

The value `true`

corresponds to an empty cell.
By default, `multicuboid`

assumes that all cells
are not empty.

**Example: **`gm = multicuboid([1 2],[1 2],[3 3],'Void',[true,false])`

**Data Types: **`double`

`gm`

— Geometry object`DiscreteGeometry`

objectGeometry object, returned as a DiscreteGeometry Properties object.

`multicuboid`

lets you create only geometries consisting of stacked or nested cuboids. For nested cuboids, the height must be the same for all cells in the geometry. For stacked cuboids, the width and depth must be the same for all cells in the geometry. Use the`ZOffset`

argument to stack the cells on top of each other without overlapping them.`multicuboid`

does not let you create nested cuboids of the same width and depth. The call`multicuboid(w,d,[h1,h2,...])`

is not supported.

아래 MATLAB 명령에 해당하는 링크를 클릭하셨습니다.

이 명령을 MATLAB 명령 창에 입력해 실행하십시오. 웹 브라우저에서는 MATLAB 명령을 지원하지 않습니다.

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

Select web siteYou can also select a web site from the following list:

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

- América Latina (Español)
- Canada (English)
- United States (English)

- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)

- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)