createMLPNetwork
Create and initialize a Multi-Layer Perceptron (MLP) network to be used within a neural state-space system
Since R2022b
Description
creates a multi-layer perceptron (MLP) network dlnet
= createMLPNetwork(nss
,type
)dlnet
of type
type
to approximate either the state, (the non-trivial part of) the
output, the encoder, or the decoder function of the neural state space object
nss
. For example, to specify the network for the state function, use
nss.StateNetwork = createMLPNetwork(nss,"state",...)
nss.OutputNetwork(2) = createMLPNetwork(nss,"output",...)
nss.Encoder = createMLPNetwork(nss,"encoder",...)
nss.Decoder = createMLPNetwork(nss,"decoder",...)
specifies name-value pair arguments after any of the input argument in the previous syntax.
You can use name-value pair arguments to set the number of layers, the number of neurons per
layer, or the type of their activation function.dlnet
= createMLPNetwork(___,Name=Value
)
For example, dlnet = createMLPNetwork(nss,"output",LayerSizes=[4
3],Activations="sigmoid")
creates an output network with two hidden layers
having four and three sigmoid-activated neurons, respectively.
Examples
Input Arguments
Output Arguments
Version History
Introduced in R2022b
See Also
Objects
idNeuralStateSpace
|nssTrainingADAM
|nssTrainingSGDM
|nssTrainingRMSProp
|nssTrainingLBFGS
|idss
|idnlgrey
Functions
setNetwork
|nssTrainingOptions
|nlssest
|generateMATLABFunction
|idNeuralStateSpace/evaluate
|idNeuralStateSpace/linearize
|sim