Note: This page has been translated by MathWorks. Click here to see

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

Forecast conditional variances from conditional variance models

`V = forecast(Mdl,numperiods,Y0)`

`V = forecast(Mdl,numperiods,Y0,Name,Value)`

generates forecasts with additional options specified by one or more name-value pair
arguments. For example, you can initialize the model by specifying presample
conditional variances.`V`

= forecast(`Mdl`

,`numperiods`

,`Y0`

,`Name,Value`

)

If the conditional variance model

`Mdl`

has an offset (`Mdl.Offset`

),`forecast`

subtracts it from the specified presample responses`Y0`

to obtain presample innovations`E0`

. Subsequently,`forecast`

uses`E0`

to initialize the conditional variance model for forecasting.`forecast`

sets the number of sample paths to forecast`numpaths`

to the maximum number of columns among the presample data sets`Y0`

and`V0`

. All presample data sets must have either`numpaths`

> 1 columns or one column. Otherwise,`forecast`

issues an error. For example, if`Y0`

has five columns, representing five paths, then`V0`

can either have five columns or one column. If`V0`

has one column, then`forecast`

applies`V0`

to each path.`NaN`

values in presample data sets indicate missing data.`forecast`

removes missing data from the presample data sets following this procedure:`forecast`

horizontally concatenates the specified presample data sets`Y0`

and`V0`

such that the latest observations occur simultaneously. The result can be a jagged array because the presample data sets can have a different number of rows. In this case,`forecast`

prepads variables with an appropriate amount of zeros to form a matrix.`forecast`

applies list-wise deletion to the combined presample matrix by removing all rows containing at least one`NaN`

.`forecast`

extracts the processed presample data sets from the result of step 2, and removes all prepadded zeros.

List-wise deletion reduces the sample size and can create irregular time series.

[1] Bollerslev, T. “Generalized Autoregressive Conditional
Heteroskedasticity.” *Journal of Econometrics*. Vol. 31,
1986, pp. 307–327.

[2] Bollerslev, T. “A Conditionally Heteroskedastic Time Series Model for
Speculative Prices and Rates of Return.” *The Review of Economics and
Statistics*. Vol. 69, 1987, pp. 542–547.

[3] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. *Time Series
Analysis: Forecasting and Control*. 3rd ed. Englewood Cliffs, NJ:
Prentice Hall, 1994.

[4] Enders, W. *Applied Econometric Time Series*. Hoboken, NJ:
John Wiley & Sons, 1995.

[5] Engle, R. F. “Autoregressive Conditional Heteroskedasticity with
Estimates of the Variance of United Kingdom Inflation.”
*Econometrica*. Vol. 50, 1982, pp. 987–1007.

[6] Glosten, L. R., R. Jagannathan, and D. E. Runkle. “On
the Relation between the Expected Value and the Volatility of the Nominal Excess Return
on Stocks.” *The Journal of Finance*. Vol. 48, No. 5, 1993,
pp. 1779–1801.

[7] Hamilton, J. D. *Time Series Analysis*. Princeton, NJ:
Princeton University Press, 1994.

[8] Nelson, D. B. “Conditional Heteroskedasticity in Asset Returns: A New
Approach.” *Econometrica*. Vol. 59, 1991, pp.
347–370.