upsert
Description
Examples
Insert MATLAB Data into Cassandra Database
Insert data from MATLAB® into an Apache™ Cassandra® database using the Apache Cassandra database C++ interface, and display the data by using a Cassandra database connection.
The Cassandra database includes the employees_by_job
database table, which contains employee data and the job_id
partition key.
Create a Cassandra database connection using the configured data source CassandraDataSource
and a blank user name and password. The apacheCassandra
function returns conn
as a connection
object.
datasource = "CassandraDataSource"; username = ""; password = ""; conn = apacheCassandra(datasource,username,password);
Return the names of the Cassandra database tables in the employeedata
keyspace. t
is a string array that contains the names of these tables.
keyspace = "employeedata";
t = tablenames(conn,keyspace)
t = 3×1 string
"employees_by_id"
"employees_by_job"
"employees_by_name"
Import employee data into MATLAB from the employees_by_job
table by using the Cassandra database connection.
keyspace = "employeedata"; tablename = "employees_by_job"; results = partitionRead(conn,keyspace,tablename);
Display the last few rows of the imported employee data.
tail(results)
ans=8×13 table
job_id hire_date employee_id commission_pct department_id email first_name last_name manager_id office performance_ratings phone_number salary
building room
____________ ___________ ___________ ______________ _____________ __________ ___________ ____________ __________ ________________ ___________________ ______________ ______
"SH_CLERK" 27-Jan-2004 184 NaN 50 "NSARCHAN" "Nandita" "Sarchand" 121 "North" 256 {2×1 int32} "650.509.1876" 4200
"MK_REP" 17-Aug-2005 202 NaN 20 "PFAY" "Pat" "Fay" 201 "East" 349 {3×1 int32} "603.123.6666" 6000
"PU_CLERK" 10-Aug-2007 119 NaN 30 "KCOLMENA" "Karen" "Colmenares" 114 "West" 252 {5×1 int32} "515.127.4566" 2500
"PU_CLERK" 15-Nov-2006 118 NaN 30 "GHIMURO" "Guy" "Himuro" 114 "East" 227 {4×1 int32} "515.127.4565" 2600
"PU_CLERK" 24-Dec-2005 116 NaN 30 "SBAIDA" "Shelli" "Baida" 114 "North" 189 {2×1 int32} "515.127.4563" 2900
"PU_CLERK" 24-Jul-2005 117 NaN 30 "STOBIAS" "Sigal" "Tobias" 114 "South" 195 {2×1 int32} "515.127.4564" 2800
"PU_CLERK" 18-May-2003 115 NaN 30 "AKHOO" "Alexander" "Khoo" 114 "West" 135 {2×1 int32} "515.127.4562" 3100
"AC_ACCOUNT" 07-Jun-2002 206 NaN 110 "WGIETZ" "William" "Gietz" 205 "East" 258 {2×1 int32} "515.123.8181" 8300
results
is a table that contains these variables:
job_id
— Job identifierhire_date
— Hire dateemployee_id
— Employee identifiercommission_pct
— Commission percentagedepartment_id
— Department identifieremail
— Email addressfirst_name
— First namelast_name
— Last namemanager_id
— Manager identifieroffice
— Office location (table that contains two variables for the building and room)performance_ratings
— Performance ratingsphone_number
— Phone numbersalary
— Salary
Display the CQL data types of the columns in the employees_by_job
database table.
cols = columninfo(conn,keyspace,tablename); cols(:,1:2)
ans=13×2 table
Name DataType
_____________________ ___________
"job_id" "text"
"hire_date" "date"
"employee_id" "int"
"commission_pct" "double"
"department_id" "int"
"email" "text"
"first_name" "text"
"last_name" "text"
"manager_id" "int"
"office" "office"
"performance_ratings" "list<int>"
"phone_number" "text"
"salary" "int"
Create a table of data representing one employee to insert into the Cassandra database. Specify the names of the variables. Create a table for the office information. Then, create a table with the employee information that contains the nested table of office information. Set the names of the variables.
varnames = ["job_id" "hire_date" "employee_id" ... "commission_pct" "department_id" "email" "first_name" ... "last_name" "manager_id" "office" "performance_ratings" ... "phone_number" "salary"]; office = table("South",160, ... 'VariableNames',["building" "room"]); data = table("IT_ADMIN",datetime('today'),301,0.25,30,"SMITH123", ... "Alex","Smith",114,office,{[4 5]},"515.123.2345",3000); data.Properties.VariableNames = varnames;
Insert the employee information into the Cassandra database.
upsert(conn,keyspace,tablename,data)
Display the inserted data by importing it into MATLAB using the partition key IT_ADMIN
. The employees_by_job
table contains a new row.
keyValue = "IT_ADMIN";
results = partitionRead(conn,keyspace,tablename,keyValue)
results=1×13 table
job_id hire_date employee_id commission_pct department_id email first_name last_name manager_id office performance_ratings phone_number salary
building room
__________ ___________ ___________ ______________ _____________ __________ __________ _________ __________ ________________ ___________________ ______________ ______
"IT_ADMIN" 06-Oct-2020 301 0.25 30 "SMITH123" "Alex" "Smith" 114 "South" 160 {2×1 int32} "515.123.2345" 3000
Close the Cassandra database connection.
close(conn)
Update Data in Cassandra Database Using Consistency Level
Using the Apache™ Cassandra® database C++ interface, update data in an Apache Cassandra database with MATLAB® data. Display the updated data by using a Cassandra database connection. Specify a consistency level for the write operation.
The Cassandra database includes the employees_by_job
database table, which contains employee data and the job_id
partition key.
Create a Cassandra database connection using the configured data source CassandraDataSource
and a blank user name and password. The apacheCassandra
function returns conn
as a connection
object.
datasource = "CassandraDataSource"; username = ""; password = ""; conn = apacheCassandra(datasource,username,password);
Return the names of the Cassandra database tables in the employeedata
keyspace. t
is a string array that contains the names of these tables.
keyspace = "employeedata";
t = tablenames(conn,keyspace)
t = 3×1 string
"employees_by_id"
"employees_by_job"
"employees_by_name"
Import employee data into MATLAB from the employees_by_job
table by using the Cassandra database connection.
keyspace = "employeedata"; tablename = "employees_by_job"; results = partitionRead(conn,keyspace,tablename);
Display the last few rows of the imported employee data.
tail(results)
ans=8×13 table
job_id hire_date employee_id commission_pct department_id email first_name last_name manager_id office performance_ratings phone_number salary
building room
____________ ___________ ___________ ______________ _____________ __________ ___________ ____________ __________ ________________ ___________________ ______________ ______
"SH_CLERK" 27-Jan-2004 184 NaN 50 "NSARCHAN" "Nandita" "Sarchand" 121 "North" 256 {2×1 int32} "650.509.1876" 4200
"MK_REP" 17-Aug-2005 202 NaN 20 "PFAY" "Pat" "Fay" 201 "East" 349 {3×1 int32} "603.123.6666" 6000
"PU_CLERK" 10-Aug-2007 119 NaN 30 "KCOLMENA" "Karen" "Colmenares" 114 "West" 252 {5×1 int32} "515.127.4566" 2500
"PU_CLERK" 15-Nov-2006 118 NaN 30 "GHIMURO" "Guy" "Himuro" 114 "East" 227 {4×1 int32} "515.127.4565" 2600
"PU_CLERK" 24-Dec-2005 116 NaN 30 "SBAIDA" "Shelli" "Baida" 114 "North" 189 {2×1 int32} "515.127.4563" 2900
"PU_CLERK" 24-Jul-2005 117 NaN 30 "STOBIAS" "Sigal" "Tobias" 114 "South" 195 {2×1 int32} "515.127.4564" 2800
"PU_CLERK" 18-May-2003 115 NaN 30 "AKHOO" "Alexander" "Khoo" 114 "West" 135 {2×1 int32} "515.127.4562" 3100
"AC_ACCOUNT" 07-Jun-2002 206 NaN 110 "WGIETZ" "William" "Gietz" 205 "East" 258 {2×1 int32} "515.123.8181" 8300
results
is a table that contains these variables:
job_id
— Job identifierhire_date
— Hire dateemployee_id
— Employee identifiercommission_pct
— Commission percentagedepartment_id
— Department identifieremail
— Email addressfirst_name
— First namelast_name
— Last namemanager_id
— Manager identifieroffice
— Office location (table that contains two variables for the building and room)performance_ratings
— Performance ratingsphone_number
— Phone numbersalary
— Salary
Display the CQL data types of the columns in the employees_by_job
database table.
cols = columninfo(conn,keyspace,tablename); cols(:,1:2)
ans=13×2 table
Name DataType
_____________________ ___________
"job_id" "text"
"hire_date" "date"
"employee_id" "int"
"commission_pct" "double"
"department_id" "int"
"email" "text"
"first_name" "text"
"last_name" "text"
"manager_id" "int"
"office" "office"
"performance_ratings" "list<int>"
"phone_number" "text"
"salary" "int"
Import the data to update by using the partitionRead
function with the partition key value MK_REP
. The data is for an employee who is a marketing representative.
keyValue = "MK_REP";
data = partitionRead(conn,keyspace,tablename,keyValue)
data=1×13 table
job_id hire_date employee_id commission_pct department_id email first_name last_name manager_id office performance_ratings phone_number salary
building room
________ ___________ ___________ ______________ _____________ ______ __________ _________ __________ ________________ ___________________ ______________ ______
"MK_REP" 17-Aug-2005 202 NaN 20 "PFAY" "Pat" "Fay" 201 "East" 349 {3×1 int32} "603.123.6666" 6000
Update the commission percentage to 0.25 for the marketing representative. Also, specify the consistency level "ONE"
to ensure that one replica node commits the write operation.
data.commission_pct = 0.25; level = "ONE"; upsert(conn,keyspace,tablename,data,'ConsistencyLevel',level)
Display the updated data by importing it into MATLAB using the partition key value MK_REP
. The updated commission percentage for the marketing representative is 0.25.
keyValue = "MK_REP";
results = partitionRead(conn,keyspace,tablename,keyValue)
results=1×13 table
job_id hire_date employee_id commission_pct department_id email first_name last_name manager_id office performance_ratings phone_number salary
building room
________ ___________ ___________ ______________ _____________ ______ __________ _________ __________ ________________ ___________________ ______________ ______
"MK_REP" 17-Aug-2005 202 0.25 20 "PFAY" "Pat" "Fay" 201 "East" 349 {3×1 int32} "603.123.6666" 6000
Close the Cassandra database connection.
close(conn)
Input Arguments
conn
— Apache Cassandra database connection
connection
object
Apache Cassandra database connection, specified as a connection
object.
keyspace
— Keyspace
character vector | string scalar
Keyspace, specified as a character vector or string scalar. If you do not know the keyspace, then access the Keyspaces
property of the connection
object using dot notation to view the keyspaces in the Cassandra database.
Example: "employeedata"
Data Types: char
| string
tablename
— Cassandra database table name
character vector | string scalar
Cassandra database table name, specified as a character vector or string scalar. If you do not know the name of the table, then use the tablenames
function to find it.
Example: "employees_by_job"
Data Types: char
| string
data
— Data to insert or update
table
Data to insert or update in a Cassandra database, specified as a table. You must specify the primary keys of the Cassandra database table, but you can ignore other Cassandra columns. The names of the variables in the table must match the names of the Cassandra columns in the database table, without case sensitivity. The data types of the variables in the table must be compatible with the CQL data types of the Cassandra columns. For details, see Convert CQL Data Types to MATLAB Data Types Using Apache Cassandra Database C++ Interface.
Data Types: table
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
Example: upsert(conn,keyspace,tablename,data,'ConsistencyLevel',"ONE",'RequestTimeout',15)
exports data by receiving a write response from one node, and the database must wait 15
seconds to perform the write operation before throwing an error.
ConsistencyLevel
— Consistency level
"ONE"
(default) | character vector | string scalar
Consistency level, specified as one of these values.
Consistency Level Value | Write Operation |
---|---|
| Commit on all replica nodes. |
| Commit on a majority of replica nodes in each data center. |
| Commit on most replica nodes. |
| Commit on most replica nodes in the local data center. |
| Commit on one replica node. |
| Commit on two replica nodes. |
| Commit on three replica nodes. |
| Commit on one replica node in the local data center. |
| Commit on at least one replica node. |
You can specify the value of the consistency level as a character vector or string scalar.
For details about consistency levels, see Configuring Data Consistency.
Data Types: char
| string
RequestTimeout
— Request timeout
12
(default) | positive numeric scalar
This property is read-only.
Request timeout, specified as a positive numeric scalar. The request timeout indicates the number of seconds the database waits to return a CQL query before throwing an error.
Data Types: double
Version History
Introduced in R2021a
See Also
Objects
Functions
Topics
MATLAB 명령
다음 MATLAB 명령에 해당하는 링크를 클릭했습니다.
명령을 실행하려면 MATLAB 명령 창에 입력하십시오. 웹 브라우저는 MATLAB 명령을 지원하지 않습니다.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)