This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

Maximizing vs. Minimizing

Global Optimization Toolbox optimization functions minimize the objective (or fitness) function. That is, they solve problems of the form


If you want to maximize f(x), minimize –f(x), because the point at which the minimum of –f(x) occurs is the same as the point at which the maximum of f(x) occurs.

For example, suppose you want to maximize the function


Write a function to compute


and then minimize g(x). Start from the point x0 = [0 0].

f = @(x)exp(-(x(1)^2 + x(2)^2))*(x(1)^2 - 2*x(1)*x(2) + 6*x(1) + 4*x(2)^2 - 3*x(2));
g = @(x)-f(x);
x0 = [0 0];
[xmin,gmin] = fminsearch(g,x0)
xmin =

    0.5550   -0.5919

gmin =


The maximum of f is the value of f(xmin), which is –gmin.

ans =


Related Topics