Maximum Likelihood Estimation for Conditional Mean Models
Innovation Distribution
For conditional mean models in Econometrics Toolbox™, the form of the innovation process is where zt can be
standardized Gaussian or Student’s t with degrees of freedom. Specify your distribution choice in the
arima
model object Distribution
property.
The innovation variance, can be a positive scalar constant, or characterized by a
conditional variance model. Specify the form of the conditional variance using the
Variance
property. If you specify a conditional variance
model, the parameters of that model are estimated with the conditional mean model
parameters simultaneously.
Given a stationary model,
applying an inverse filter yields a solution for the innovation
For example, for an AR(p) process,
where is the degree p AR operator polynomial.
estimate
uses maximum likelihood to estimate the
parameters of an arima
model. estimate
returns fitted values for any parameters in
the input model object equal to NaN
. estimate
honors any equality constraints in the input model object, and does not return
estimates for parameters with equality constraints.
Loglikelihood Functions
Given the history of a process, innovations are conditionally independent. Let Ht denote the history of a process available at time t, t = 1,...,N. The likelihood function for the innovation series is given by
where f is a standardized Gaussian or t density function.
The exact form of the loglikelihood objective function depends on the parametric form of the innovation distribution.
If zt has a standard Gaussian distribution, then the loglikelihood function is
If zt has a standardized Student’s t distribution with degrees of freedom, then the loglikelihood function is
estimate
performs covariance matrix estimation for
maximum likelihood estimates using the outer product of gradients
(OPG) method.
See Also
Objects
Functions
Related Topics
- Estimate Multiplicative ARIMA Model
- Estimate Conditional Mean and Variance Model
- Conditional Mean Model Estimation with Equality Constraints
- Presample Data for Conditional Mean Model Estimation
- Initial Values for Conditional Mean Model Estimation
- Optimization Settings for Conditional Mean Model Estimation
- Maximum Likelihood Estimation for Conditional Variance Models