AI를 사용한 5G NR
5G NR 통신 시스템에 Deep Learning Toolbox™ 기능을 통합한 딥러닝 워크플로를 살펴봅니다.
관련 정보
추천 예제
CSI Feedback with Autoencoders
Compress CSI feedback using an autoencoder neural network in a 5G NR communications system.
CSI Feedback with Transformer Autoencoder
Design and train a convolutional transformer deep neural network for channel state information feedback by using a downlink clustered delay line (CDL) channel model.
- R2024b 이후
Prepare Data for CSI Processing
Generate channel estimates and prepare a data set to train an autoencoder for channel state information (CSI) feedback compression.
- R2025a 이후
CSI Feedback with Autoencoders Implemented on an FPGA
Demonstrates how to use an autoencoder neural network to compress downlink channel state information (CSI) over a clustered delay line (CDL) channel. CSI feedback is in the form of a raw channel estimate array. In this example, the autoencoder network is implemented on an FPGA using the Deep Learning HDL Toolbox™.
(Deep Learning HDL Toolbox)
- R2024b 이후
Optimize CSI Feedback Autoencoder Training Using MATLAB Parallel Server and Experiment Manager
Accelerate determination of the optimal training hyperparameters for a channel state information (CSI) autoencoder by using a Cloud Center cluster and Experiment Manager.
- R2024a 이후
Online Training and Testing of PyTorch Model for CSI Feedback Compression
Train an autoencoder-based PyTorch® neural network online and test for CSI compression.
- R2025a 이후
Offline Training and Testing of PyTorch Model for CSI Feedback Compression
Train an autoencoder-based PyTorch neural network offline and test for CSI compression.
- R2025a 이후
Import TensorFlow Channel Feedback Compression Network and Deploy to GPU
Generate GPU specific C++ code for a pretrained TensorFlow™ channel state feedback autoencoder.
- R2023b 이후
AI for Positioning Accuracy Enhancement
Use AI to estimate the position of user equipment and compare performance with traditional TDoA techniques.
- R2024a 이후
- 라이브 스크립트 열기
Neural Network for Beam Selection
Reduce the overhead of beam selection by using the receiver location rather than knowledge of the communication channels.
Train DQN Agent for Beam Selection
Train a deep Q-network (DQN) reinforcement learning agent for beam selection in a 5G new radio communications system.
- R2022b 이후
Spectrum Sensing with Deep Learning to Identify 5G, LTE, and WLAN Signals
Train a semantic segmentation network using deep learning for spectrum monitoring.
- R2021b 이후
Apply Transfer Learning on PyTorch Model to Identify 5G and LTE Signals
Coexecution with Python to identify 5G NR and LTE signals by using the transfer learning technique on a pre-trained PyTorch™ semantic segmentation network for spectrum sensing.
- R2025a 이후
Train PyTorch Channel Prediction Models
Train PyTorch-based channel prediction neural networks using data generated in MATLAB®.
- R2025a 이후
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)














