CNN deep network consist of inbuilt feature extraction (flattening) layer along with classification layers. By omitting the feature extraction layer (conv layer, Relu layer, pooling layer), we can give features such as GLCM, LBP, MFCC, etc directly to CNN just to classify alone. This can be acheived by building the CNN architecture using fully connected layers alone. This is helpful for classifying audio data.
http://cs231n.github.io/convolutional-networks/ visit this page for doubts regarding the architecture. I have used C->R->F->F->F architecture
인용 양식
Selva (2025). CNN classifier using 1D, 2D and 3D feature vectors (https://www.mathworks.com/matlabcentral/fileexchange/68882-cnn-classifier-using-1d-2d-and-3d-feature-vectors), MATLAB Central File Exchange. 검색 날짜: .
MATLAB 릴리스 호환 정보
플랫폼 호환성
Windows macOS Linux카테고리
- Image Processing and Computer Vision > Computer Vision Toolbox > Recognition, Object Detection, and Semantic Segmentation > Object Detection >
태그
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!