Mitigation of adversarial attacks: monitoring smart grids

버전 1.0.0 (4 MB) 작성자: BERGHOUT Tarek
These codes presents a deep learning approach based robust data engineering for mitigation of adversarial attacks and wide area monitoring.
다운로드 수: 136
업데이트 날짜: 2023/6/7

라이선스 보기

These files describe an experiment performed on phasor measurement unites dataset that is made publicly available . The goal of the experiment is to train a deep network to be resilient against any adversarial attacks. A specific Robust feature engineering and a deep learning are involved in model reconstructions. fast gradient sign method and basic iterative method are involved in this case.
Notes: (i) To be able to produce experiments provided in of these codes, you have to run the "*.m" files in the directory in alphabetical order. (ii) Then you can plot results starting by any "plot...*.m" files.
link to the original paper:
Please cite our work as:
Berghout, T.; Benbouzid, M.; Amirat, Y. Towards Resilient and Secure Smart Grids against PMU Adversarial Attacks: A Deep Learning-Based Robust Data Engineering Approach. Electronics 2023, 12, 2554. https://doi.org/10.3390/electronics12122554

인용 양식

Berghout, Tarek, et al. “Towards Resilient and Secure Smart Grids against PMU Adversarial Attacks: A Deep Learning-Based Robust Data Engineering Approach.” Electronics, vol. 12, no. 12, MDPI AG, June 2023, p. 2554, doi:10.3390/electronics12122554.

양식 더 보기
MATLAB 릴리스 호환 정보
개발 환경: R2023a
R2018a 이상 릴리스와 호환
플랫폼 호환성
Windows macOS Linux
태그 태그 추가

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
버전 게시됨 릴리스 정보
1.0.0