Everything You Always Wanted to Know about Log Periodic Power Laws for Bubble Modelling but Were Afraid to Ask

Petr Geraskin∗ Dean Fantazzini†

Abstract

Sornette et al. (1996), Sornette and Johansen (1997), Johansen et al. (2000) and Sornette (2003a) proposed that, prior to crashes, the mean function of a stock index price time series is characterized by a power law decorated with log-periodic oscillations, leading to a critical point that describes the beginning of the market crash. This paper reviews the original Log-Periodic Power Law (LPPL) model for financial bubble modelling, and discusses early criticism and recent generalizations proposed to answer these remarks. We show how to fit these models with alternative methodologies, together with diagnostic tests and graphical tools to diagnose financial bubbles in the making in real time. An application of this methodology to the Gold bubble which busted in December 2009 is then presented.

Keywords: Log-periodic models, LPPL, Crash, Bubble, Anti-Bubble, GARCH, Forecasting, Gold.
JEL classification: C32, C51, C53, G17.

∗Higher School of Economics, Moscow, Russia. E-mail: petr-geraskin@mail.ru
†Moscow School of Economics - Moscow State University (Russia); Faculty of Economics - Higher School of Economics (Moscow, Russia); The International College of Economics and Finance - Higher School of Economics (Moscow, Russia); E-mail: fantazzini@mse-msu.ru

This is the working paper version of the paper Everything You Always Wanted to Know about Log Periodic Power Laws for Bubble Modelling but Were Afraid to Ask, forthcoming in the European Journal of Finance.

1
1 Introduction

Detecting a financial bubble and predicting when it will end has become of crucial importance, given the series of financial bubbles that led to the current "Second Great Contraction", using the definition by Reinhart and Rogoff (2009). As noted by Sornette (2009), Sornette and Woodard (2010), Kaizoji and Sornette (2010), Sornette et al. (2009) and Fantazzini (2010a,b), the global financial crisis that has started in 2007 can be considered an example of how the bursting of a bubble can be dealt with by creating new bubbles. This consideration which is not new in the financial literature, see e.g. Sornette and Woodard (2010) and references therein, was indirectly confirmed by Lou Jiwei, the chairman of the $298 billion sovereign wealth fund named China Investment Corporation (CIC), which was created in 2007 with the goal to manage an important part of the People's Republic of China's foreign exchange reserves. On August the 28th 2009, Lou told reporters on the sidelines of a forum organized by the Washington-based Brookings Institution and the Chinese 'Economists 50 Forum', a Beijing think-tank, that "both China and America are addressing bubbles by creating more bubbles and we're just taking advantage of that. So we can't lose". Moreover, Lou also added that "CIC was building a broad investment portfolio that includes products designed to generate both alpha and beta; to hedge against both inflation and deflation; and to provide guaranteed returns in the event of a new crisis". See the full Reuters article by Zhou Xin and Alan Wheatley at http://www.reuters.com/article/ousiv/idUSTRE57S0D420090829 for more details. The previous comments clearly point out how important is to have tools able to detect bubbles in the making.

Unfortunately, there is no consensus in the economic literature on what a bubble is: Gürkaynak (2008) surveyed a large set of econometric tests of asset price bubbles and found that for each paper that finds evidence of bubbles, there is another one that fits the data equally well without allowing for a bubble, so that it is not possible to distinguish bubbles from time-varying fundamentals. A similar situation can also be found in the professional literature: for example, Alan Greenspan stated on August the 30th 2002 that "...We, at the Federal Reserve ... recognized that, despite our suspicions, it was very difficult to definitively identify a bubble until after the fact, that is, when its bursting
confirmed its existence”. So, is this a lost cause? Absolutely not.

A model which has quickly gained a lot of attention among financial practitioners and in the Physics academic literature due to the many successful predictions, is the so called Log Periodic Power Law (LPPL) approach proposed by Johansen et al. (2000) and Sornette (2003a,b). The Johansen-Ledoit-Sornette (JLS) model assumes the presence of two types of agents in the market: a group of traders with rational expectations and a second group of so called "noise" traders, that is irrational agents with herding behavior. The idea of the JLS model comes from statistical physics and it shares many elements with a model introduced by Ising for explaining ferromagnetism, see e.g. Goldenfeld (1992). According to this model, traders are organized into networks and can have only two states: buy or sell. In addition, their trading actions depend on the decisions of other traders and on external influences. Due to these interactions, agents can form groups with self-similar behavior which can lead the market to a bubble situation, which can be considered a situation of "order", compared to the "disorder" of normal market conditions. Another important feature introduced in this model is the positive feedbacks which are generated by the increasing risk and the agents' interactions, so that a bubble can be a self-sustained process.

Many examples of calibrations of financial bubbles with LPPLs are reported in Sornette (2003a), who suggests that the LPPL model provides a good starting point to detect bubbles and forecast their most probable end. Johansen and Sornette (2004) identified the most extreme cumulative losses (i.e. drawdowns) in a large set of financial assets and showed that they belong to a probability density distribution, which is distinct from the distribution of the 99% of the smaller drawdowns which represent the normal market regime. Moreover, they showed that, for two-thirds of these extreme drawdowns, the market prices followed a super-exponential behavior prior to their occurrences, as confirmed by a calibration of a LPPL model. These particular drawdowns (or outliers) are called "dragon kings" in Sornette (2009). Interestingly, this approach allowed to diagnose bubbles ex-ante, as shown in a series of real-life tests, see Sornette and Zhou (2006), Sornette, Woodard and Zhou (2008) and Zhou and Sornette (2003, 2006, 2008, 2009). Furthermore, it is currently being used at the Financial Crisis Observatory (FCO), which is a scientific platform set
up at the ETH - Zurich, aimed at "testing and quantifying rigorously the hypothesis that financial markets exhibit a degree of inefficiency and a potential for predictability, especially during regimes when bubbles develop", see http://www.er.ethz.ch/fco for more details.

The goal of this paper is to present an easy-to-use and self-contained guide for bubble modelling and detecting with Log Periodic Power Laws, which contains all the sufficient steps to derive the main models in this growing and interesting field of the literature, and discusses the important aspects for practitioners and researchers.

The rest of the paper is organized as follows. Section 2 reviews the original JLS model with the main steps required for its derivation. Section 3 discusses the early criticism to this approach and recent generalizations proposed to answer these remarks. Section 4 discusses how to fit LPPLs models, by presenting three estimation methodologies: the original 2-step nonlinear optimization by Johansen et al. (2000), the Genetic Algorithm approach proposed by Jacobsson (2009) and the 2-step/3-step ML approach proposed by Fantazzini (2010a). Section 5 is devoted to the diagnosis of bubbles in the making by using a set of different techniques. We describe diagnostic tests based on the LPPL fitting residuals, diagnostic tests based on rational expectation models with stochastic mean-reverting termination times, as well as graphical tools useful for capturing bubble development and for understanding whether a crash is in sight or not. Section 6 presents a detailed empirical application devoted to the burst of the gold bubble in December 2009, while Section 7 briefly concludes.

2 The Original LPPL model

Johansen et al. (JLS, 2000) consider an ideal market with no dividends, and where interest rates, risk aversion and market liquidity constraints are ignored. Therefore, the fundamental value for an asset is \(p(t) = 0 \), so any positive value of \(p(t) \) represents a bubble. In general, \(p(t) \) can be viewed as the price in excess of the fundamental value of an asset. In this framework, there are two types of agents: first, a group of rational agents who are identical in their preferences and characteristics, so they can be substituted with a single representative agent. Second, a group of irrational agents whose herding behavior leads to the development of a financial bubble. When this tendency develops till a certain
critical value, a large proportion of agents will then assume the same short position, thus causing a crash. A financial crash is not a certain event in this model, but it is characterized by a probability distribution: as a consequence, it is rational for financial agents to continue investing, because the risk of the crash to happen is compensated by the positive return generated by the financial bubble and there exists a small probability for the bubble to disappear smoothly, without the occurrence of a crash.

The key variable to model the price behavior before a crash is the crash hazard rate \(h(t) \), that is the probability per unit of time that the crash will take place, given that it has not yet occurred. The hazard rate \(h(t) \) quantifies the probability that a great number of agents will assume the same sell position simultaneously, a position that the market will not be able to satisfy unless the prices decrease substantially. We remark that in this model a strong collective answer (as it is the case for a crash) is not necessarily the consequence of one elaborated internal mechanism of global coordination, but it can appear starting from imitative local micro-interactions which are then transmitted by the market resulting in a macroscopic effect. In this regard, JLS (2000) first discuss a macroscopic "mean field" approach and then turn to a more microscopic approach.

2.1 Macroscopic Modelling

According to the mean field theory from Statistical Mechanics (see e.g. Stanley (1971) and Goldenfeld, (1992)), a simple way for describing an imitative process is by assuming that the hazard rate \(h(t) \) can be described by the following equation:

\[
\frac{dh}{dt} = Ch^\delta
\]

(1)

where \(C > 0 \) is a constant, and \(\delta > 1 \) represents the average number of interactions among traders minus one. Thus, it follows that an amplification of interactions increases the hazard rate. If we integrate (1), we have:

\[
h(t) = \left(\frac{h_0}{t - t_c} \right)^\alpha, \quad \alpha = \frac{1}{\delta - 1}
\]

(2)

where \(t_c \) is the critical time determined by the initial conditions at some origin of time. It can be shown that the condition \(\delta > 1 \) (and consequently \(\alpha > 0 \)) is crucial to obtain a growth of \(h(t) \) as \(t \to t_c \) and therefore a critical point in finite time. Moreover, the condition
that \(\alpha < 1 \) is required for the price not to diverge at \(t_c \). Rewriting these condition for \(\delta \) we have that \(2 < \delta < \infty \), that is, an agent should be connected at least with two agents.

Another important feature of this approach is the possibility of self-fulfilling crisis, which is a concept recently proposed to explain the recession in the '90 in seven countries (Argentina, Indonesia, Hong Kong, Malaysia, Mexico, South Korea and Thailand), see Krugman (1998) and Sornette (2003a). It is suggested that the loss of investor’s confidence caused a self-fulfilling process in these countries and thus led to severe recessions. This feedback process can be modelled by using the previous mean field approach:

\[
\frac{dh}{dt} = Dp^\mu, \quad \mu > 0
\]

(3)

where \(D \) is a positive constant. The underlying idea is that the lack of confidence quantified by the hazard rate increases when the market price departs from its fundamental value. Therefore, the price has to increase to compensate the increasing risk.

2.2 Microscopic Modelling

JLS (2000) and Sornette (2003a) assume that the group of irrational agents are connected into a network. Each agent is indexed by a integer number \(i = 1, \ldots, I \) and \(N(i) \) represents the number of agents who are directly connected to agent \(i \) in the network. JLS (2000) assume that each agent can have only two possible states \(s_i \): "buy" \((s_i = +1) \) or "sell" \((s_i = -1) \). JLS (2000) suppose that the state of agent \(i \) is determined by the following Markov process:

\[
s_i = \text{sign} \left(K \sum_{k \in N(i)} s_j + \sigma \varepsilon_i \right)
\]

(4)

where the sign function \(\text{sign}(x) \) is equal to +1 if \(x > 0 \) and to −1 if \(x < 0 \), \(K \) is a positive constant, \(\varepsilon_i \) is an i.i.d. standard normal random variable. In this model, \(K \) governs the tendency of imitation among traders, while \(\sigma \) governs their idiosyncratic behavior. If \(K \) increases, the order in the network increases as well, while the reverse is true when \(\sigma \) increases. If order wins, the agents will imitate their close neighbors and their imitation will spread all over the network, thus causing a crash\(^1\). More specifically and in analogy

\(^1\)In the context of the alignment of atomic spins to create magnetization, this model represented by (4) is identical to the so-called two-dimensional Ising model which was solved explicitly by Onsager (1944), and where the disorder parameter is represented by the temperature of the system.
with the Ising model, there exists a critical point K_c, that determines the separation between the different regimes: when $K < K_c$, the disorder reigns and the sensibility to a small global influence is low. When the imitation force K grows approaching K_c, a hierarchy of groups of agents acting collectively and with the same position is formed. As a consequence, the market becomes extremely sensitive to small global disturbances. Finally, for a larger imitation force so that $K > K_c$, the tendency of imitation is so intense that there exists a strong predominance of one state/position among agents.

A physical quantity that represent the degree of a system sensitivity to an external perturbation (or general global influence) is the so-called susceptibility of the system. This quantity describes the probability that a large group of agents will have the same state, given the existent external influences in the network. Let us assume the existence of a term G which measures the global influence, and add it to (4):

$$s_i = \text{sign} \left(K \sum_{k \in N(i)} s_j + \sigma \varepsilon_i + G \right)$$ \hspace{1cm} (5)

If we define the average state of the market as $M = (1/I) \sum_{i=1}^{I} s_i$, for $G = 0$ we have $E[M] = 0$ by symmetry. For $G > 0$, we have $M > 0$, while for $G < 0$, $M < 0$. Thus, it follows that $E[M] \times G \geq 0$. The susceptibility of the system is then defined as $\chi = \frac{dE[M]}{dG} \bigg|_{G=0}$.

In general, the susceptibility has three possible interpretations: first, it measures the sensitivity of M to a small change in the global influence. Secondly, it is (a constant times) the variance of M around its zero expectation, caused by idiosyncratic shocks ε_i. Finally, if we consider two agents and we force one to be in a certain state, the impact that our intervention will have on the second agent will be proportional to the susceptibility.

2.3 Price Dynamics and Derivation of the JLS Model

As previously anticipated, the rational agent considered by JLS (2000) is risk neutral and has rational expectations. Thus, the asset price $p(t)$ follows a martingale process, i.e. $E_t[p(t')] = p(t)$, $\forall t' > t$, where $E_t[.]$ represents the conditional expectation given all information available up to time t. In the case of market equilibrium, the previous equality is a necessary condition for no arbitrage.

Considering that there exists a not zero probability for the crash to happen, we can define
a jump process \(j \) which is equal to zero before crash and one one after the occurrence of the crash at time \(t_c \). Since \(t_c \) is unknown, it is described by a stochastic variable with a probability density function \(q(t) \), a cumulative distribution function \(Q(t) \) and an hazard rate given by \(h(t) = q(t)/[1 - Q(t)] \), which is the probability per unit of time of the crash taking place in the next instant, given that it has not yet occurred. Assuming for simplicity that the price falls during a crash by a fixed percentage \(k \in (0, 1) \), the asset price dynamics is given by:

\[
\frac{dp}{dt} = \mu(t) p(t) dt - kp(t) dj \quad \Rightarrow \\
E[dp] = \mu(t) p(t) dt - kp(t) [P(dj = 0) \times (dj = 0) + P(dj = 1) \times (dj = 1)] = \mu(t) p(t) dt - kp(t) h(t) dt
\]

The no arbitrage condition and rational expectations together imply that \(E[dp] = 0 \), so that \(\mu(t) p(t) dt - kp(t) h(t) dt = 0 \), which yields \(\mu(t) = k h(t) \). Substituting this last equality into (6), we obtain the differential equation defining the price dynamics before the occurrence of the crash given by \(d(\ln p(t)) = k h(t) \), whose solution is

\[
\ln \left[\frac{p(t)}{p(t_0)} \right] = \kappa \int_{t_0}^{t} h(t') dt'
\]

The idea is that the higher the probability of the crash is, the faster the price should grow to compensate investors for the increased risk of a crash in the market, see also Blanchard (1979). At this point, JLS (2000) employ the result that a system of variables close to a critical point can be described by a power law and the susceptibility of the system diverges as follows:

\[
\chi \approx A(K_c - K)^{-\gamma}
\]

where \(A \) is a positive constant and \(\gamma > 0 \) is called the critical exponent of the susceptibility (equal to 7/4 for the 2-dimensional Ising model). Unfortunately, the bi-dimensional Ising model considers only investors interconnected in an uniform way, while in real markets some agents can be more connected than others. Modern financial markets are constituted by a collection of interacting investors, that differ substantially in size, going from the individual investors until the large pension funds. Furthermore, all investors in the world are organized inside a network (family, friends, work, etc), within which they locally influence each other. A more appropriate representation for the current structure of financial markets is given by a hierarchical diamond lattice, which is used by JLS (2000) to develop a
model of rational imitation. This structure can be described as follows: first, consider two agents linked to each other, so that we have one link and two agents. Secondly, substitute this link with four new links forming a diamond: the two original agents are now situated in the two diametrically opposite vertices, whereas the two other vertices are occupied by two new traders. Thirdly, for each one of these 4 links, substitute them with 4 new links, forming a diamond in the same way. If we repeat this operation an arbitrary number of times, we will get a Hierarchical Diamond Lattice. As a result, after \(n \) iterations there will be \(N = \frac{2}{3} \times (2 + 4^n) \) agents and \(L = 4^n \) links among them. For example, the last generated agents will have only two links, the initial agents will have \(2^n \) neighbors, while the others will have an intermediate number of neighbors in between. A version of this model was solved by Derrida et al. (1983). The basic properties are similar to those of the rational imitation model using the bi-dimensional network. The only crucial difference is that the critical exponent \(\gamma \) of the susceptibility in (8) can be a complex number. Therefore, the general solution is given by:

\[
\chi \approx \text{Re}[A_0(K_c - K)^{-\gamma} + A_1(K_c - K)^{-\gamma+i\omega} + \ldots] \\
\approx A'_0(K_c - K)^{-\gamma} + A'_1(K_c - K)^{-\gamma} \cos[\omega \ln(K_c - K) + \psi] + \ldots
\]

(9)

where \(A_0, A_1, \omega \) are real numbers and \(\text{Re}[.] \) represents the real part of a complex number. The power law in (9) is now corrected by oscillations called "log-periodic", because they are periodic in the logarithm of the variable \((K_c - K)\), and \(\omega/2 \) is their log-frequency. These oscillations are accelerating since their frequency explodes as it reaches the critical time. Considering this mechanism, JLS (2000) assume that the crash hazard rate behave in a similar way to the susceptibility in the neighborhood of a critical point. Therefore, using (9) and considering a hierarchical lattice for the financial market, the hazard rate has the following behavior:

\[
h(t) \approx B_0(t_c - t)^{-\alpha} + B_1(t_c - t)^{-\alpha} \cos[\omega \ln(t_c - t) + \psi']
\]

(10)

This behavior of the hazard rate shows that the risk of a crash per unit of time, given that it has not yet occurred, increases drastically when the interactions among investors become sufficiently strong. However, this acceleration is interrupted and superimposed with an accelerating sequence of phases where the risk decreases, which is represented by the log-periodic oscillations. Applying (10) to (7), we get the following evolution for the
asset price before a crash:

\[
\ln[p(t)] \approx \ln[p(c)] - \frac{\kappa}{\beta} \left\{ B_0(t_c - t)^\beta + B_1(t_c - t)^\beta \cos[\omega \ln(t_c - t) + \phi] \right\}
\]

which can be rewritten in a more suitable form for fitting a financial time series as follows:

\[
\ln[p(t)] \approx A + B(t_c - t)^\beta \{1 + C \cos[\omega \ln(t_c - t) + \phi]\}
\]

where \(A > 0\) is the value of \(\ln[p(t_c)]\) at the critical time, \(B < 0\) the increase in \(\ln[p(t)]\) over the time unit before the crash if \(C\) were to be close to zero, \(C \neq 0\) is the proportional magnitude of the oscillations around the exponential growth, \(0 < \beta < 1\) should be positive to ensure a finite price at the critical time \(t_c\) of the bubble and quantifies the power law acceleration of prices, \(\omega\) is the frequency of the oscillations during the bubble, while \(0 < \phi < 2\pi\) is a phase parameter. Expression (12), which is known as the Log Periodic Power Law (LPPL), is the fundamental equation that describes the temporal growth of prices before a crash and it has been proposed in different forms in various papers, see e.g. Sornette (2003a) and Lin et al. (2009) and references therein. We remark that \(A, B, C\) and \(\phi\), are just units distributions of betas and omegas, as described in Sornette and Johansen (2001) and Johansen (2003), and do not carry any structural information.

3 Criticism and Recent Generalizations

3.1 Criticism

The most important and detailed criticism against the LPPL approach was put forward by Chang and Feigenbaum (2006), who tested the mechanism underlying the LPPL by using Bayesian methods applied to the time series of returns (see also Laloux et al. (1999) for additional criticism and the reply by Johansen (2002)). By comparing marginal likelihoods, they showed that a null hypothesis model without log-periodical structure outperforms the JLS model. And if the JLS model was true, they found that parameter estimates obtained by curve fitting have small posterior probability. As a consequence, they suggested to abandon the class of models in which the LPPL structure is revealed through the expected return trajectory. These problems are due to the fact that the JLS model considers a deterministic time-varying drift decorated by a non-stationary stochastic random walk component: this latter component has a variance which increases over time, so that the
deterministic trajectory moves away from the observable price path and model estimation with prices is no more consistent. Therefore, Chang and Feigenbaum (2006) considered the time series of returns instead of prices, and resorted to Bayesian methods to simplify the analysis of a complicated time-series model like the JLS model, see Bernardo and Smith (1994) or Koop (2003) for an introduction to Bayesian theory. The benchmark model in Chang and Feigenbaum (2006) is represented by the Black-Scholes model, whose logarithmic returns are given by

\[r_i \sim N(\mu(t_i - t_{i-1}), \sigma^2(t_i - t_{i-1})) \]

(13)

where \(r_i = q_i - q_{i-1} \) and \(q_i \) is the log of the price. The drift \(\mu \) is drawn from the prior distribution \(N(\mu_r, \sigma_r) \), while the variance \(\sigma^2 \) is specified in terms of its inverse \(\tau = 1/\sigma^2 \), known as the precision, which is higher the more precisely the random variable is known. The precision is drawn from the prior distribution \(\tau \sim \Gamma(\alpha, \beta) \). The alternative hypothesis model by Chang and Feigenbaum (2006) is the LPPL model with a constant drift \(\mu \) in the mean function (which was not included in the original JLS model):

\[r_i \sim N(\mu(t_i - t_{i-1}) + \Delta H_{i,i-1}, \sigma^2(t_i - t_{i-1})) \]

where

\[
\Delta H_{i,i-1} = B(t_c - t_{i-1})^{\beta} \left[1 + \frac{C}{\sqrt{1 + \left(\frac{\omega}{\beta} \right)^2}} \cos(\omega \ln(t_c - t_{i-1}) + \phi) \right] - B(t_c - t_i)^{\beta} \left[1 + \frac{C}{\sqrt{1 + \left(\frac{\omega}{\beta} \right)^2}} \cos(\omega \ln(t_c - t_i) + \phi) \right] \]

(14)

The LPPL model is characterized by the parameter vector \(\xi = (A, B, C, \beta, \omega, \phi, t_c) \), and these parameters are drawn independently from the following prior distributions:

\[
A \sim N(\mu_A, \sigma_A), \quad B \sim \Gamma(\alpha_B, \beta_B), \quad C \sim U(0, 1), \quad \beta \sim B(\alpha_{\beta}, \beta_{\beta})
\]

\[
\omega \sim \Gamma(\alpha_\omega, \beta_\omega), \quad \phi \sim U(0, 2\pi), \quad t_c - t_N \sim \Gamma(\alpha_{t_c}, \beta_{t_c})
\]

where \(\Gamma, B \) and \(U \) denote the Gamma distribution, Beta distribution and uniform distribution, respectively. Given the independence among prior distributions, the prior density for this model is simply given by the product of all marginal priors, while the probability data density for \(q_i \) is
\[f(q_i | q_{i-1}, \theta_{LPPL}; LPPL) = \sqrt{\frac{\tau}{2\pi(t_i - t_{i-1})}} \exp \left[-\frac{\tau(q_i - q_{i-1} - \mu(t_i - t_{i-1}) - \Delta H_{i,i-1})^2}{2(t_i - t_{i-1})} \right] \]

so that the likelihood function for the observed data \(Q \) is given by

\[f(Q | \theta_{LPPL}; LPPL) = \prod_{i=1}^{N} f(q_i | q_{i-1}, \theta_{LPPL}; LPPL) \]

Finally, the log marginal likelihood necessary for the computation of the Bayes factor is given by

\[\mathcal{L} = \ln \left(\int_{\Theta} f(Q | \theta_{LPPL}; LPPL) \varphi(\theta_{LPPL}; LPPL) d\theta_{LPPL} \right) \]

which can be computed with Monte-Carlo methods and a large number of sampling values. By using relatively diffuse priors with large variances in order to encompass the true values of the parameters, Chang and Feigenbaum (2006) found that the marginal likelihood remains basically the same, whether they consider the LPPL specification in the mean function, or only the drift term \(\mu \). This result remains robust to a change of prior distributions and they showed that the null hypothesis outperforms the JLS model in terms of marginals likelihood with different sets of priors.

Apart from the problem with weakly informative prior densities, see e.g. Bauwens et al. (2000) for a discussion, Lin et al. (2009) pointed out that the Bayes approach to hypothesis testing assumes that some kind of ergodicity on a single data sample applies, and that this sample has to be of sufficiently large size (which is not always the case). Clearly, this has to be tested and is far from being trivial. Furthermore, it is known that LPPL models can have likelihoods with several local maxima, see Jacobsson (2009) for a recent review, and the Bayes approach aims at solving this problem by integration, that is by smoothing. However, for small to medium sample sizes, the smoothing in the marginal likelihoods can be harmful, particularly in case of poor priors, and can decrease the number of local maxima at the price of a loss of efficiency. This may explain why the null hypothesis model with no log-periodic components showed a better result than the LPPL model.

3.2 The Generalized LPPL Model with Mean-Reversing Residuals

The work by Chang and Feigenbaum (2006) represented the most important challenge to the original JLS model, and this is why it prompted a response by Sornette and his
co-authors in 2009. Lin et al. (2009) proposed a generalization of the original model which wants to make the process consistent with direct price calibration. As we have shown in the previous sections, the original JLS model has a random walk component with increasing variance which makes direct estimation with prices inconsistent, as well as causing the lack of power of Bayesian methods, as shown by Lin et al. (2009). Instead, the "volatility-confined LPPL model" proposed by Lin et al. (2009) combines a mean reverting volatility process together with a stochastic conditional return which represents the continuous reassessments of investors' beliefs for future returns. As a consequence, the daily logarithmic returns are no longer described by a deterministic drift decorated by a Gaussian-distributed white noise, and the expected returns become stochastic.

Using the standard framework of rational expectations, Lin et al. (2009) assume that the price dynamics during a bubble is governed by the following process:

\[
\frac{dI}{I} = \mu(t)dt + \sigma_Y dY + \sigma_W dW - \kappa dj \\
dY = -\alpha Y dt + dW
\]

where \(I \) is the stock price index or the price of a generic asset, \(W \) is the standard Wiener process, \(\mu(t) \) is a time-varying drift characteristic of a bubble regime, \(j \) is equal to zero before the crash and one afterwards, while \(\kappa \) represents the percentage by which the asset price falls during a crash. When \(0 < \alpha < 1 \), \(Y \) denotes an Ornstein-Uhlenbeck process, so that \(dY \) and \(Y \) are both stationary, and the volatility remains bounded till the crash. This property guarantees that direct estimation with prices is consistent. We remark that if \(\alpha = 0 \), we retrieve the original JLS model. The corresponding model in discrete time is given by

\[
\ln I_{i+1} - \ln I_i = \mu_i + \sigma_Y (Y_{i+1} - Y_i) + \sigma_W \varepsilon_i - \kappa \Delta j_i
\]

\[
Y_{i+1} = (1 - \alpha) Y_i + \varepsilon_i, \quad \varepsilon_i \sim N(0, 1)
\]

Using the theory of the Stochastic Discount Factor (SDF), complete markets and no-arbitrage, Lin et al. (2009) show that the asset log returns follow this process,

\[
\ln I_{i+1} = \ln I_i + \Delta H_{i,i-1} - \alpha (\ln I_i - H_i) + u_i
\]

where \(\Delta H_{i,i-1} \) is given by expression (14) and \(u_i \) is a Gaussian white noise, while the conditional probability distribution for the logarithmic returns is given by:

\[
r_{i+1} = \ln I_{i+1} - \ln I_i \sim N(\Delta H_{i+1,i} - \alpha (\ln I_i - H_i), \sigma^2_\alpha(t_{i+1} - t_i))
\]
Differently from the original JLS model, the additional term $-\alpha (\ln I_i - H_i)$ ensures that the log-price fluctuates around the LPPL trajectory H_t, thus guaranteeing the consistency of direct estimation with prices.

Lin et al. (2009) remarked that the previous model based on rational expectation separates rather artificially the noise traders and the rational investors. Moreover, even though the rational investors cannot make profit on average, rational agents endowed with different preferences may in principle arbitrage the risk-neutral agents. Therefore, assuming that rational investors have homogeneous preferences is rather restrictive. Nevertheless, Lin et al. (2009) show that the previous results can be obtained by using a complete different approach, which considers the theory of the so-called Behavioral SDF, where the price movements follows the dynamics of the market sentiment, see Shefrin (2005) for a textbook treatment of the behavioral approach to asset pricing. We refer to Lin et al. (2009) for more details about this alternative approach.

3.3 Other Generalizations: The Log-Periodic-AR(1)-GARCH(1,1) Model

While the original LPPL specification can model the long-range dynamics of price movements, nevertheless it is unable to consider the short-term market dynamics, thus showing residual terms which can be strongly autocorrelated and heteroskedastic. As a consequence, Gazola et al. (2008) proposed the following AR(1)-GARCH(1,1) log-periodic model:

\begin{align}
I_i &= A + B(t_c - t_i)^\beta + C(t_c - t_i)^\beta \cos[w \ln (t_c - t_i) + \phi] + u_i \\
u_i &= \rho u_{i-1} + \eta_i \\
\eta_i &= \sigma_i \varepsilon_i, \quad \varepsilon_i \sim N(0, 1) \\
\sigma_i^2 &= \alpha_0 + \alpha_1 \eta_{i-1}^2 + \alpha_2 \sigma_{i-1}^2
\end{align}

where ε_i is a standard white noise term satisfying $E[\varepsilon_i] = 0$ and $E[\varepsilon_i^2] = 1$, whereas the conditional variance σ_i^2 follows a GARCH(1,1) process. Under the normality assumption for the error term ε_i, the maximum likelihood estimator for the parameter vector $\Pi = [A, B, C, t_c, \beta, w, \phi, \rho, \alpha_0, \alpha_1, \alpha_2]$ is obtained through the numerical maximization of the log likelihood:

\begin{equation}
\ln L(\Theta) = -\frac{1}{2} (N - 1) \ln (2\pi) - \frac{1}{2} \sum_{i=2}^{N} \ln \sigma_i^2 - \frac{1}{2} \sum_{i=2}^{N} \frac{\eta_i^2}{\sigma_i^2}
\end{equation}
In order to improve the optimization procedure, each parameter of the log-periodic model (19) denoted by \(\theta \) and defined in a restricted interval denoted by \([a, b]\), can be re-parameterized according to the following monotonic transformation:

\[
\theta = b \frac{\exp(\tilde{\theta})}{1 + \exp(\tilde{\theta})} + a \left(1 - \frac{\exp(\tilde{\theta})}{1 + \exp(\tilde{\theta})}\right)
\]

(21)

This monotonic transformation turns the original estimation problem over a restricted space of solutions into an unrestricted problem, which eases estimation particularly when poor starting values are chosen. In this case, the delta method can be used to compute the standard errors of the estimate. We remind that the delta method is used to compute an estimator for the variance of functions of estimators and the corresponding confidence bands. Let \(\hat{\mathbf{V}}[\tilde{\theta}] \) be the estimated variance-covariance matrix of \(\tilde{\theta} \) then, by using the delta method, a variance-covariance matrix for a general nonlinear transformation \(g(\tilde{\theta}) \) is given by (see Hayashi (2000) for more details):

\[
\hat{\mathbf{V}}[g(\tilde{\theta})] = \frac{\partial g(\tilde{\theta})}{\partial \tilde{\theta}} \hat{\mathbf{V}}[\tilde{\theta}] \frac{\partial g(\tilde{\theta})}{\partial \tilde{\theta}}'
\]

Gazola et al. (2008) use a 2-step procedure to choose the starting values for the numerical maximization of (20):

1. the starting values for the set of parameters \(\Phi = [A, B, C, t_c, \beta, w, \phi] \) are retrieved from the estimation of the original LPPL model (12);

2. the starting values for the set of parameters \([\rho, \alpha_0, \alpha_1, \alpha_2]\) of the short-term stochastic component \(u_i \) are obtained by estimating an AR(1)-GARCH(1,1) model on the residuals \(\hat{u_i} \) from the original LPPL model (12).

4 How to fit LPPL models?

Estimating LPPL models in general has never been easy, due to the frequent presence of many local minima of the cost function where the minimization algorithm can get trapped. However, some recent developments have simplified considerably the estimation process.
4.1 The Original 2-step Nonlinear Optimization

Johansen et al. (2000) noted that noisy data, relatively small samples and a large number of parameters make the estimation of LPPL models rather difficult. Therefore, they proposed to reduce the number of free parameters by slaving the three linear parameters and computing them from the estimated nonlinear parameters.

More specifically, if we rewrite the original LPPL model as follows,

\[y_i = A + B(t_c - t_i)^\beta + C(t_c - t_i)^\beta \cos(\omega \ln(t_c - t_i) + \phi) \]

(22)

or more compactly as,

\[y_i = A + Bf_i + Cg_i \]

where

\[y_i = \ln I_i \quad \text{or} \quad I_i, \quad f_i = (t_c - t_i)^\beta \]

\[g_i = (t_c - t_i)^\beta \cos(\omega \ln(t_c - t_i) + \phi) \]

then, it is straightforward to see that the linear parameters \(A, B, \) and \(C \) can be obtained analytically by using ordinary least squares:

\[
\begin{pmatrix}
\sum_{i=1}^{N} y_i \\
\sum_{i=1}^{N} y_i f_i \\
\sum_{i=1}^{N} y_i g_i
\end{pmatrix} =
\begin{pmatrix}
N \\
\sum_{i=1}^{N} f_i \\
\sum_{i=1}^{N} g_i
\end{pmatrix}
\begin{pmatrix}
A \\
B \\
C
\end{pmatrix}
\]

(23)

We can write the previous system compactly by using matrix notation:

\[X'y = (X'X)b, \quad \text{where} \quad X = \begin{pmatrix} 1 & f_1 & g_1 \\ \vdots & \vdots & \vdots \\ 1 & f_N & g_N \end{pmatrix}, \quad b = \begin{pmatrix} A \\ B \\ C \end{pmatrix} \]

(24)

so that

\[\hat{b} = (X'X)X'y \]

(25)

and we have only four free parameters to estimate (see also Jacobsson (2009) for a similar derivation). We remark that this simplification can also be seen as an example of concentrated maximum likelihood.
The estimation procedure consists of two steps:

1. Use the so-called Taboo search (Cvijović and Klinowski, 1995) to find 10 candidate solutions, where only the cases with $B < 0$, $0 < \beta < 1$ and $t_c > t_i$ (if a bubble) are considered, see also Sornette and Johansen (2001). However, alternative grid searches can also be considered. Recently, Lin et al. (2009) have imposed stronger restrictions, by considering $0.1 < \beta < 0.9$, $6 \leq \omega \leq 15$ so that the log-periodic oscillations are neither too fast (to avoid fitting noise) nor too slow (otherwise they would provide a contribution to the trend), and $|C| < 1$ to ensure that the hazard rate $h(t)$ remains always positive\(^2\);

2. Each of these 10 solutions is then used as starting value in a Levenberg-Marquardt nonlinear least squares algorithm. The solution with the minimum sum of squares between the fitted model and the observations is taken as the final solution.

4.2 Genetic Algorithms

The Genetic Algorithm (GA) is an algorithm inspired by Darwin’s "survival of the fittest idea", and its theory was developed by John Holland in 1975. The GA is a computer simulation that aims at mimicking the natural selection in biological systems, which is governed by four phases: a selection mechanism, a breeding mechanism, a mutation mechanism, and a culling mechanism. The GA does not require the computation of any gradient or curvature and it does not need the cost function to be smooth or continuous.

The use of GA to estimate LPPL models has been proposed by Jacobsson (2009) following the GA methodology by Gulsten et al. (1995). Similarly to Johansen et al. (2000), Jacobsson (2009) reduces the number of free parameters to four, by "slaving" the three linear parameters A, B and C, which are computed by using (25). Her procedure consists of four steps:

1. **Selection Mechanism: Generating the Initial Population.** Each member of the "financial" population is represented by a vector of the four nonlinear coefficients t_c, ϕ, ω, and

\(^2\)The lower bound on ω is rather strong, given that Sornette (2003a) found that $\omega = 6.36 \pm 1.56$ by using a large collection of empirical evidence. Moreover, the recent work about Chinese market bubbles by Jiang et al. (2010) considers only the former set of conditions.
3. The members of the initial population are randomly drawn from a uniform distribution with a pre-specified range, and for each member, the residual sum of squares is calculated. Jacobsson (2009) considers an initial population of 50 members (that is, 50 parameter vectors).

2. *Breeding mechanism.* The 25 members with the best value of the cost function are selected from the population to be included in the breeding program. An offspring is then generated by randomly drawing two parents, without replacement, and taking the arithmetic mean of them. Jacobsson (2009) repeats this procedure 25 times and each pair of parents is drawn randomly with replacement, so that one parent can generate an offspring with another parent (...therefore, betrayals are allowed!).

3. *Mutation mechanism.* Genetic mutations in nature play a key role in the evolution of a species, since they may increase its probability of survival, as well as introduce less favorable characteristics. In our framework, mutations perturb the previous solutions to allow new regions of the search space to be explored, so that premature convergence in local minima can be avoided.

 The mutation process is implemented by computing the statistical range \((\theta_{\text{max}} - \theta_{\text{min}})\) for each parameter in the population. The range for each parameter is then multiplied with a factor \(\pm k\), to obtain the perturbation variable \(\varepsilon\), which is uniformly distributed over the interval \([-k \times (\text{parameter range}), k \times (\text{parameter range})]\). Jacobsson (2009) considers \(k = 2\). 25 members are then drawn randomly, without replacement, from the initial population of 50 computed in the first step. Each selected member is then mutated by adding an exclusive vector of random perturbations for every parameter. Therefore, the mutation mechanism allows to compensate the problem of an inaccurate guess for the initial intervals in the solution space.

4. *Culling mechanism.* Jacobsson (2009) merges the members generated by mutation and breeding into the population, so that a total of 100 solutions is present (50 old, 25 offsprings, and 25 mutations). All of the 100 solutions are ranked according to their cost function in ascending order, and the 50 best solutions are culled, and live on into the next generation. The rest is deleted.
The previous algorithm is then iterated a certain number of times till a desired termination criterion is met. Similarly to the second step of the optimization process used by Johansen et al. (2000) and described in section 4.1, Jacobsson (2009) further refines the parameters estimated with the GA by using them as starting values for the Nelder-Mead Simplex method, also known as the downhill simplex method.

4.3 The 2-step/3-step ML Approach

Fantazzini (2010a) found that estimating LPPL models for "anti-bubbles" was much easier than estimating LPPL models for bubbles: an anti-bubble is symmetric to a bubble, and represents a situation when the market peaks at a critical time t_c and then decreases following a power law with decelerating log-periodic oscillations, see Johansen and Sornette (1999), Johansen and Sornette (2000), Zhou and Sornette (2005) and Fantazzini (2010b) for more details. Furthermore, estimating models with log-prices was much simpler than models with prices in levels, and in the latter case a much more careful choice of the starting values had to be made.

In this regard, we have already seen that the original LPPL model has a stochastic random walk component with increasing variance, so that the deterministic pattern moves away from the observable price path. Therefore, the idea by Fantazzini (2010a) is to reverse the original times series in order to minimize the effect of the non-stationary component during the estimation process. The same idea can be of help also in case of models with stationary error terms, like the one proposed by Lin et al. (2009): a time series with strongly autocorrelated error terms is almost undistinguishable from a non stationary process in small-to-medium sized samples, see e.g. Stock (1994), Ng and Perron (2001) and Stock and Watson (2002) for a discussion of this hot debated issue in the econometric literature. See, for instance, Figure 1 which shows a simulated LPPL model with AR(1) error terms and 1000 observations, as well as its reverse.

The 2-step ML approach used in Fantazzini (2010a) to estimate LPPL models for financial bubbles, also allowing for an AR(1)-GARCH(1,1) model in the error terms as in (19), is given below:

1. Reverse the original time series and estimate the LPPL for the case of an anti-bubble.
by using the BFGS (Broyden, Fletcher, Goldfarb, Shanno) algorithm, together with a cubic or quadratic step length method (STEPBT), see e.g. Dennis and Schnabel (1983).

2. Keeping fixed the LPPL parameters $\hat{\Phi} = [\hat{A}, \hat{B}, \hat{C}, \hat{\beta}, \hat{\omega}, \hat{\phi}]$ computed in the first stage, estimate the parameters of the short term stochastic component $[\rho, \alpha_0, \alpha_1, \alpha_2]$.

In case of poor starting values, or when the bubble has just start forming (Jiang et al. (2010) and Sornette (2003a) remarked that a bubble cannot be diagnosed more than 1 year in advance of the crash), the numerical computation can be further eased by considering one additional step. The 3-step ML approach used in Fantazzini (2010a) is described below:

1. Reverse the original time series and then consider the first temporal observation as if it was the date of the crash, that is set $t_c = t_1$. Estimate the remaining LPPL parameters $[A, B, C, \beta, \omega, \phi]$ for the case of an anti-bubble by using the BFGS (Broyden, Fletcher, Goldfarb, Shanno) algorithm, together with a cubic or quadratic step length method (STEPBT).

2. Use the estimated parameters in the previous step as starting values for estimating all the LPPL parameters, by using again the reversed times series.
3. Keeping fixed the LPPL parameters $\hat{\Phi} = [\hat{A}, \hat{B}, \hat{C}, \hat{i}_c, \hat{\beta}, \hat{\omega}, \hat{\phi}]$ computed in the second stage, estimate the parameters of the short term stochastic component $[\rho, \alpha_0, \alpha_1, \alpha_2]$. Being a multi-stage estimation process, the asymptotic efficiency is lower than the 1-step full ML estimation. However, the dramatic improvement in numerical convergence and the improved efficiency in small-to-medium sized samples more than justify the multi-step procedure. An (unreported) simulation study confirms the benefits of this procedure in small-to-medium datasets.

5 Diagnosing Bubbles in the Making

The main method that we have considered so far to detect financial bubbles is by fitting a LPPL model to a price series. However, in order to reduce the possibility of false alarms, it is good practice to implement a battery of tests, so that a prediction must pass all tests to be considered worthy, see e.g. Sornette and Johansen (2001) and Jiang et al. (2010).

5.1 Diagnostic Tests based on the LPPL fitting residuals

We have seen in section 3.2 that Lin et al. (2009) proposed a model for financial bubbles where the LPPL fitting residuals follows a mean-reverting Ornstein-Uhlenbeck process. This implies that the corresponding residuals follow an AR(1) process and we can test this hypothesis by using unit root test.

Lin et al. (2009) use Phillips-Perron (PP) and Augmented Dickey-Fuller (ADF) unit-root tests, where the null hypothesis H_0 is the presence of a unit root. Unfortunately, a well known shortcoming of the previous two unit root tests is their low power when the underlying data-generating process is an AR(1) process with a coefficient close to one. Therefore, we suggest to consider also the test proposed by Kwiatkowski, Phillips, Schmidt and Shin (KPSS, 1992), where the null hypothesis is a stationary process. Considering the null hypothesis of a stationary process and the alternative of a unit root allows us to follow a conservative testing strategy: if we reject the null hypothesis, we can be confident that the series has indeed a unit root; but if the results of the previous two tests indicate a unit root while the result of the KPSS test indicates a stationary process, one should be very cautious and opt for the latter result.
The KPSS test is implemented in the most common statistical and econometric software: see e.g. Griffiths et al. (2008) for applications with Eviews as well as the Eviews User’s Guide (version 5 or higher), Pfaff (2008) for a description of unit root tests in R, together with the many routines written for Gauss and Matlab which can be found on the web.

5.2 Diagnostic Tests based on Rational Expectation Models with Stochastic Mean-Reverting Termination Times

Lin and Sornette (2009) propose two models of transient bubbles in which their termination dates occur at some potential critical time \tilde{t}_c, which follows a stationary process with an unconditional mean T_c. The main advantage of these models is the possibility to compute the potential critical time without the need to estimate the complex stochastic differential equation describing the underlying price dynamics. Interestingly, the rational arbitrageurs discussed in Lin and Sornette (2009) can detect bubbles, but they can not make a deterministic forecast because they have little knowledge about the other arbitrageurs’ beliefs about the process governing the stochastic critical time \tilde{t}_c. The heterogeneity of the rational agents’ expectations determines a synchronization problem among these arbitrageurs, thus allowing the financial bubble to survive till its theoretical end time, see also Abreu and Brunnermeier (2003) for a similar model. Moreover, the two models by Lin and Sornette (2009) can be tested and they allow to diagnose financial bubbles in the making in real time. Besides, both models highlight the importance of positive feedback, that is when a high price pushes even further the demand so that the return and its volatility tend to be a nonlinear accelerating function of the price. This positive feedback mechanism is quantified by a unique exponent m, which is larger than 1 (respectively 2, for the second model) when we are in a bubble regime.

5.2.1 A Test Based on a Finite-Time Singularity in the Price Dynamics with Stochastic Critical Time

The first model proposed by Lin and Sornette (2009) views a bubble as a faster-than-exponential accelerating stochastic price, which leads to a finite-time singularity in the price dynamics at a stochastic critical time. They show in their Proposition 1 that the
price dynamics in a bubble regime follows this process,

\[p(t) = K(T_c - t)^{-\beta}, \]

\[\beta = \frac{1}{m-1}, \quad K = \left(\frac{\beta}{\mu}\right)^\beta, \quad T_c = \frac{\beta}{\mu}p_0^{-\frac{1}{\beta}}, \quad T_c = T_c + \tilde{t}_c \]

(26)

where \(\mu \) is the instantaneous return rate, \(p_0 \) denotes the price at the start time of the bubble at \(t = 0 \), while the critical time \(\tilde{t}_c \) follows an Ornstein-Uhlenbeck process with zero unconditional mean (see Lin and Sornette (2009) for the full derivation of the model). This last property provides that the end of the bubble cannot be forecasted with certainty but it is a stochastic variable, while the time \(T_c \) can be interpreted as the consensus forecast formed by rational arbitrageurs of the stochastic critical time \(\tilde{T}_c \). In fact, we have that

\[E[\tilde{T}_c] = E[T_c + \tilde{t}_c] = T_c \]

(27)

In order to build a diagnostic test for financial bubbles, Lin and Sornette (2009) invert (26) to obtain an expression for the critical time series \(\tilde{T}_{c,i} \):

\[\tilde{T}_{c,i}(t) = \frac{1}{K} \left(\frac{1}{[p(t)]^{1/\beta}} \right)^{1/\beta} + t, \quad t = t_i - 749, \ldots, t_i \]

(28)

where \(\tilde{T}_{c,i} \) is defined over the time window \(i \) ending at time \(t_i \), and they consider time windows of 750 trading days that slide with a time step of 25 days from the beginning to the end of the available financial time series. We remark that \(p(t) \) is known, while the parameters \(K \) and \(\beta \) have to be estimated. The previous inversion aims at transforming a non-stationary possibly explosive price process \(p(t) \) into what should be a stationary time series \(\tilde{T}_{c,i} \), in absence of misspecification. Therefore, we can then estimate \(T_c \) according to (27) by using the arithmetic average of \(\tilde{T}_{c,i}(t) \),

\[T_{c,i} = \frac{1}{750} \sum_{i=1}^{750} \tilde{T}_{c,i}(t) \]

(29)

so that the fluctuations \(\tilde{t}_{c,i}(t) \) can be computed as

\[\tilde{t}_{c,i}(t) = \tilde{T}_{c,i}(t) - T_{c,i} \]

(30)

The first test by Lin and Sornette (2009) consists of the following two steps:

1. Perform a bivariate grid search over the parameter space of \(K \) and \(\beta \) to find the ten best pairs \((K, \beta)\) such that the resulting time series \(\tilde{t}_{c,i}(t) \) given by (30) rejects a standard unit-root test of non-stationarity at the 99.5% significance level. Lin and Sornette (2009) employ the ADF test, but the addition of the KPSS would be
advisable. Needless to say, only a subset of the windows will reject the null hypothesis of a unit root (for the ADF test) or will not reject the null of stationarity (for the KPSS test).

2. If there are time windows for which there are selected pairs \((K, \beta) \) according to the previous step, select the pair with the smallest variance for its corresponding time series \(\tilde{t}_{c,i}(t) \). This gives the optimal pair \(K_i^* \) and \(\beta_i^* \) which provides the closest approximation to a stationary time series for \(\tilde{t}_{c,i}(t) \) given by (30). For a given window \(i \), an alarm is declared when

- \(\beta^* > 0 \), which yields \(m > 1 \);
- \(T_{c,i} - t_i < 750 \), which implies that the termination time of the bubble is not too far. Lin and Sornette (2009) also consider two additional alarm levels: \(T_{c,i} - t_i < 500 \) and \(T_{c,i} - t_i < 250 \).

The idea of the last step is that the closer we are to the end of the financial bubble, the stronger should be the evidence for the bubble as a faster-than-exponential growth, and the alarms should be diagnosed repeatedly by several successive windows.

5.2.2 A Test Based on a Finite-Time Singularity in the Momentum Price Dynamics With Stochastic Critical Time

The main disadvantage of the previous model is that the price diverges when approaching the critical time \(\tilde{T}_c \) at the end of the bubble. Therefore, Lin and Sornette (2009) consider a second model where the price remains always finite and a bubble is a regime characterized by an accelerating momentum ending at a finite time singularity with a stochastic critical time. They show in their Proposition 3 that the log-price \(y(t) = \ln p(t) \) in a bubble regime follows this process,

\[
y(t) = A - B(T_c + \tilde{t}_c(t) - t)^{1 - \beta}, \\
\beta = \frac{1}{m-1}, \quad T_c = \frac{\beta}{\mu} x_0^{\frac{1}{\beta}}, \quad x_0 := x(t = 0) \quad B = \frac{1}{1 - \beta (\beta/\mu)^{\beta}} \quad \tilde{T}_c = T_c + \tilde{t}_c
\]

(31)

where \(\mu \) is the instantaneous return rate, \(A \) is a constant, \(x(t) = dy/dt \) denotes the effective price momentum, i.e. the instantaneous time derivative of the logarithm of the price, while the critical time \(\tilde{t}_c \) follows an Ornstein-Uhlenbeck process with zero unconditional mean.
(see Lin and Sornette (2009) for the full derivation of this model). In this second model, it is the high price momentum \(x \) which pushes higher the demand, so that the return and its volatility become nonlinear accelerating functions. Instead, in the first model, it is the price that provides a positive feedback on future prices, rather than the price momentum. Using a procedure similar to (28) to transform a non-stationary possibly explosive log-price process \(y(t) \) into a stationary time series \(\tilde{T}_{c,i} \), Lin and Sornette (2009) invert (31) to obtain an expression for the critical time series \(\tilde{T}_{c,i} \):

\[
\tilde{T}_{c,i}(t) = \left(\frac{A - \ln p(t)}{B} \right)^{\frac{1}{1-\beta}} + t, \quad t = t_i - 899, \ldots, t_i
\]

where \(\tilde{T}_{c,i} \) is defined over the time window \(i \) ending at time \(t_i \), and they consider time windows of 900 trading days that slide with a time step of 25 days from the beginning to the end of the available financial time series. We can then estimate \(T_{c,i} \) according to (29) by computing the arithmetic average of \(\tilde{T}_{c,i}(t) \) (with 750 replaced by 900), whereas the fluctuations \(\tilde{t}_{c,i}(t) \) around \(T_{c,i} \) can be computed by using (30). Similarly to the first model, we remark that \(p(t) \) is known while the parameters \(A, B \) and \(\beta \) have to be estimated.

The second test by Lin and Sornette (2009) consists of the following two steps:

1. Perform a trivariate grid search over the parameter space of \(A, B \) and \(\beta \) to find the ten best triplets \((A, B, \beta)\) such that the resulting time series \(\tilde{t}_{c,i}(t) \) given by (30) rejects a standard unit-root test of non-stationarity at the 99.5% significance level. Lin and Sornette (2009) employ the ADF test, but again the addition of the KPSS would be advisable.

2. If there are time windows for which there are selected triplets \((A, B, \beta)\) according to the previous step, select the pair with the smallest variance for its corresponding time series \(\tilde{t}_{c,i}(t) \). This gives the optimal triplet \(A_i^*, B_i^* \) and \(\beta_i^* \) which provides the closest approximation to a stationary time series for \(\tilde{t}_{c,i}(t) \) given by (30). For a given window \(i \), an alarm is declared when

- \(0 < \beta_i^* < 0 \), which yields \(m > 2 \) and is called level 1 filter. Lin and Sornette (2009) also consider two additional alarm levels: \(m > 2.5 \) (level 2) and \(m > 3 \) (level 3);
• \(-25 \leq T_{c,i} - t_i \leq 50\).

The stronger upper bound on \(T_{c,i} - t_i\) stems from the fact that the finite-time singularity in the price momentum is a weaker singularity which can only be observed only close to the critical time. The lower bound of \(-25\) days is due to the fact that the analysis is performed in sliding windows with a time step of 25 days. Using a dataset covering the last 30 years of the SP500 index, the NASDAQ composite index and the Hong Kong Hang Seng index, Lin and Sornette (2009) found that the second diagnostic method seems to be more reliable and with fewer false alarms than the first method analyzed in Section 5.2.1.

5.3 Graphical tools: The Crash Lock-In Plot (CLIP)

Fantazzini (2010a) proposed a graphical tool that proved to be useful to track the development of a bubble and to understand whether a possible crash is in sight, or at least a bubble deflation. The idea is to plot on the horizontal axis the date of the last observation in the estimation sample, while on the vertical axis the estimated crash date \(\hat{t}_c\) computed by fitting the LPPL to the data: if a change in the stock market regime is approaching, then the recursively estimated \(\hat{t}_c\) should stabilize around a constant value close to the critical time. Fantazzini (2010a) called such a plot the Crash Lock-In Plot (CLIP).

This idea can be easily justified theoretically by resorting to the models proposed by Lin and Sornette (2009), in which the critical time \(\bar{T}_c\) follows an Ornstein-Uhlenbeck process. We report in Figure 2 the CLIPs for the Chinese Shanghai Composite Index in July 2009, a case which was analyzed in details in Bastiaensen et al. (2009) and Jiang et al. (2010), and for the SP500 in July 2007, being that the peak of the market in the decade. We used data spanning from the global minima till 1 day before the market peak.

6 An Application: The Burst of the Gold Bubble in December 2009

The gold market peaked on the 02/12/2009, hitting the record high at $1,216.75 an ounce in Europe, and then started falling on the 04/12/2009, losing more than 10% in two weeks. The main concerns cited to be behind this bubble were the future prospects for
a week dollar as well inflationary fears, see e.g. Mogi (Reuters, 2009) and White (The Telegraph, 2009). However, there were also some worried calls about the possibility of a gold bubble: the prestigious magazine *Fortune* wrote on the 12/10/2009 that "...*Signs of gold fever are everywhere...*" but "...amid the buying frenzy and after a decade-long run-up that has seen the price quadruple, is gold still a smart investment? The simple answer: Wherever the price of gold is headed in the long term, several market watchers say the fundamentals indicate that gold is poised to fall" (Cendrowski, *Beware the gold bubble*, 2009). Interestingly, on the day the gold price peaked, i.e. 02/12/2009, Hu Xiaolian, a vice-governor at the People’s Bank of China, told reporters in Taipei that "... *gold prices are currently high and markets should be careful of a potential asset bubble forming...*", see the original report by R. Tung for Reuters (2009). The gold price, starting from November the 12th 2008 (which represents the global minima over a three-year span) till the end of January 2010 is reported in Figure 3. The same Figure reports also the "Search Volume Index" by Google Trends, which computes how many searches have been done for the term "Gold Price" on Google over time\(^3\).

The "Search Volume Index" is an interesting tool because it allows us to get some insights as to when the bubble started: looking at Figure 3, we can notice that a massive interest around gold started to build during the year 2008, just before the price minima in November 2008. Therefore, we expect that a possible LPPL model can be fitted using data starting from the year 2008.

\(^3\)See http://www.google.com/intl/en/trends/about.html for more details. In this case, the time span starts from 2004, which is the first year available for this analysis.
6.1 LPPL Fitting With Varying Window Sizes

Jiang et al. (2010) tested the stability of LPPL estimation parameters by varying the size of the estimation samples and adopting the strategy of fixing one endpoint and varying the other one, see also Sornette and Johansen (2001). By sampling many intervals as well as by using bootstrap techniques, they obtained probabilistic predictions on the time intervals in which a given bubble may end and lead to a new market regime (which may not necessarily be a crash, but also a transition to a plateau or a slower decay). Following their example, we fit the logarithm of the gold price by using the LPPL eq. (22) in shrinking windows and in expanding windows. The shrinking windows have a fixed end date \(t_2 = 01/12/2009 \), while the starting date \(t_1 \) increases from 12/11/2008 to 17/08/2009 in steps of five (trading) days. The expanding windows have a fixed starting date \(t_1 = 12/11/2008 \) while the end date \(t_2 \) increases from 17/08/2009 to 01/12/2009 in steps of five (trading) days.

Given the stochastic nature of the initial parameter selection and the noisy nature of the underlying generating processes, we employed four estimation algorithms: the original Taboo Search algorithm proposed by Cvijović and Klinowski (1995), the 2-step nonlinear optimization by Johansen et al. (2000), the Pure Random Search (PRS) and the 3-step ML approach by Fantazzini (2010a). The estimation results are then filtered by the
following LPPL conditions, which were also used in Jiang et al. (2010) for the case of Chinese bubbles: \(\hat{t}_c > t_2 \), \(B < 0 \) and \(0 < \beta < 1 \). The selected \(\hat{t}_c \) are then used to compute the 20%/80% and 5%/95% quantile range of values of the crash dates which are reported in Figure 4: the left plot shows the ranges which are obtained by considering the filtered results from all four estimation methods, whereas the right plot shows the ranges obtained by considering only the 2-step nonlinear optimization and the 3-step ML approach.

As expected, the original Taboo Search and the PRS are very inefficient methods compared to the competing 2-step and 3-step approaches and deliver very large quantile ranges. Nevertheless, the two medians \(\hat{t}_c \), equal to 11/12/2009 for the left plot and 05/12/2009 for the right plot, are very close to the actual market peak date which occurred on the 02/12/2009 (i.e. 9.9206 when converted in units of one year). Moreover, if we consider only the most efficient methods, the 20%/80% quantile interval is rather close and precise and diagnoses that the critical time \(t_c \) for the end of the bubble and the change of market regime lies in the time sample 03/12/2009 - 11/12/2009 (the market started to fall on the 04/12/2009).

![Quantile ranges of the crash date](image)

Figure 4: Quantile ranges of the crash date.

why we consider it in our analysis in the place of GA.
6.2 Diagnostic Tests based on the LPPL fitting residuals

We have discussed in section 3.2 that Lin et al. (2009) proposed a model for financial bubbles where the LPPL fitting residuals follows a mean-reverting Ornstein-Uhlenbeck process. Therefore, the corresponding residuals should follow a stationary AR(1) process and this hypothesis can be tested by using unit root tests. We employed ADF and KPSS tests: a rejection of the null hypothesis in the first test together with a failure to reject the null in the second test, indicates that the residuals are stationary and thus compatible with an O-U process.

We used the residuals resulting from the previous estimation windows and numerical algorithms, that is 48 shrinking windows, 19 expanding windows and 4 estimation methods, which gives a total of 268 calibrations. The fraction P_{LPPL} of these different windows that met the LPPL conditions was equal to $P_{LPPL} = 60.1\%$. The conditional probability that, out of the fraction P_{LPPL} of windows that satisfied the LPPL conditions, the null hypothesis of non-stationarity was rejected for the residuals, was equal to $P_{Stat.Res.|LPPL} = 100\%$ when using the ADF test at the probability level $\alpha = 0.001$. As for the KPSS test, the null of stationarity was not rejected at the 10% level or higher in all cases which satisfied the LPPL conditions. Therefore, this empirical evidence is comparable with the results reported by Jiang et al. (2010) for the case of the 2005-2007 and 2008-2009 Chinese stock market bubbles.

6.3 Diagnostic Tests based on Rational Expectation Models with Stochastic Mean-Reverting Termination Times

We employed the two diagnostics proposed by Lin and Sornette (2009) to detect the presence of a bubble (and reviewed in Section 5.2) to the gold price time series, from November the 12th 2008 to December the 1st 2009. As previously discussed, we considered both the ADF and KPSS unit root tests. Moreover, we also used time windows of 500 and 250 trading days to compute the critical time series $\tilde{T}_{c,i}$ in (28)-(29) and (32), together with the original 750 trading days for the first diagnostic and 900 for the second one. The rationale of this choice is that a long time span may include data which are not observed during a bubble regime but during a standard Geometric Brownian Motion regime (or
other regimes). Of course, reducing the time window implies a loss of efficiency. Interestingly the first procedure did not flag any alarm for the presence of a bubble, whereas the second one flagged three series of alarms close to three important price falls, see Figure 5: the first group of alarms was centered around the local market peak on the 20/02/2009 when gold reached the value of $995.3 an ounce, very close to the important psychological barrier of $1000, and after two days it started falling, losing more than 10% in two weeks. The second group of alarms was centered around the local market peak on the 02/06/2009 when gold reached the value of $982.9 and after two days it started falling, losing more than 5% in a week. Finally, the third group of alarms was centered around the global market peak on the 02/12/2009 when gold reached the value of $1216 an ounce.

![Figure 5: Logarithm of the gold price and corresponding alarms as vertical lines indicating the ends of the windows of T trading days, in which the second diagnostic flags an alarm for the presence of a bubble. The value of the exponent m for each alarm is reported in the legend.](image)

This empirical evidence seems to suggest that the KPSS test provides more precise alarms than the ADF test, which is not a surprise given the well known limitations of the latter test. Moreover, a time window of 250 observations delivers more reliable flags for the presence of a bubble (or imminent price falls) than longer time spans, being more robust.
to market regime changes. However, a time window of 900 observations still provides useful information.

6.4 Crash Lock-In Plots (CLIPs) for the Gold Bubble

The CLIP plots on the horizontal axis the date of the last observation in the estimation sample, while on the vertical axis the estimated crash date \hat{t}_c computed by fitting the LPPL to the data. Following the previous empirical evidence as well as the one reported in Lin and Sornette (2009) and Fantazzini (2010a), we computed the CLIP by fitting the data with two rolling estimation windows of 900 and 250 days, and by using the simple average of the estimated \hat{t}_c resulting from the four estimation algorithms discussed in Section 6.1. We used data spanning from the 12/11/2008 till 1 day before the global market peak on the 02/12/2009. The two CLIPs are reported in Figure 6.

![Figure 6: Crash Lock-In Plots for the Gold price series. The three vertical lines correspond to the two local market peaks on the 20/02/2009 and the 02/06/2009, and to the global market peak on the 02/12/2009, respectively.](image)

Not surprisingly, the indications provided by the two CLIPs are rather similar to those provided by the second diagnostic test by Lin and Sornette (2009) discussed in the previous section: the recursive forecasted crash dates computed with time windows of 250 trading days stabilize around three constant values which are very close to the dates corresponding to the two local market peaks on the 20/02/2009 and the 02/06/2009, and to the global market peak on the 02/12/2009. The indications from the second CLIP computed with time windows of 900 trading days are somewhat weaker, but confirm the previous alarms. As expected, the estimates computed with smaller time spans are more noisy than those.
with longer time spans.

7 Conclusions

We presented an easy-to-use and self-contained guide for modelling and detecting financial bubbles with Log Periodic Power Laws, which contains the sufficient steps to derive the main models and discusses the important aspects for practitioners and researchers. We reviewed the original JLS model and we discussed early criticism to this approach and recent generalizations proposed to answer these remarks. Moreover, we described three different estimation methodologies which can be employed to estimate LPPLs models. We then examined the issue of diagnosing bubbles in the making by using a set of different techniques, that is by considering diagnostic tests based on the LPPL fitting residuals, diagnostic tests based on rational expectation models with stochastic mean-reverting termination times, as well as graphical tools useful for capturing bubble development and for understanding whether a crash is in sight or not. We finally presented a detailed empirical application devoted to the burst of the gold bubble in December 2009, which highlighted how a series of different diagnostics flagged an alarm for the presence of a bubble before prices started to fall.

References

