How can I go back and resolve failed attempts?

조회 수: 2 (최근 30일)
sittmo
sittmo . 2013년 8월 6일
Hi everyone, so I have the following code:
clc;
clear;
% Import data
% PD: probability of default
% CM: covariance matrix
% DT: default threshold
PD = xlsread('Data_CIMDO.xlsx','PD');
CM = xlsread('Data_CIMDO.xlsx','COV');
DT = xlsread('Data_CIMDO.xlsx','DT');
Original_PD = PD; %Store original PD
LM_rows = 11; %Expected LM rows
LM_columns = length(PD) %Expected LM columns
LM_FINAL = zeros(LM_rows,LM_columns); %Dimensions of LM_FINAL
for i = 1:length(PD)
PD = Original_PD(:,i);
options = optimset('Display','iter');
x0 = rand(size(PD,1)+1,1);
[LM,fval,exitflag] = fsolve(@(x)ConstLM(x,PD,CM,DT), x0, options);
LM_FINAL(:,i) = LM;
end
Now since the code depends on the initial value (x0) when solving for LM, after one run of the code there are many unsolved values for LM as the initial x0 was incorrectly guessed. So how can I adjust the code such that it keeps running until all LM's have been solved?
Thanks.

채택된 답변

Jan
Jan 2013년 8월 6일
편집: Jan 님. 2013년 8월 6일
...
for k = 1:100
[LM, fval, exitflag] = fsolve(@(x)ConstLM(x,PD,CM,DT), x0, options);
if exitflag == 1
break;
end
end
if exitflag ~= 1
warning('FSOLVE did not find a solution.');
end
...
I'd prefer such a loop with a maximum loop counter to guarantee that the function stops in finite time.
  댓글 수: 2
Walter Roberson
Walter Roberson 2013년 8월 7일
You can put the
x0 = rand(size(PD,1)+1,1);
before the fsolve() call to use a new starting point each time.

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Programming에 대해 자세히 알아보기

태그

아직 태그를 입력하지 않았습니다.

제품

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by