Plotting amplitude of individual frequencies over time.

조회 수: 46 (최근 30일)
Fred Hollingsworth
Fred Hollingsworth 2020년 11월 19일
댓글: Star Strider 2020년 11월 19일
Hi,
I'm coming back to MATLAB after a long time away.
I need to plot the amplitude of an individual frequency over the length of an audio file. I'm currently reading in the audio file, and then using an FFT on it for another part of my analysis. However, I don't know how to specific a frequency to plot the amplitude of, rather than see the spectral characteristics of all frequencies at once.
Any help & code examples would be very appreciated.

채택된 답변

Star Strider
Star Strider 2020년 11월 19일
The pspectrum function can likely do what you want. Use the 'spectrogram' type and choose the x-axis column that corresponds to your frequency-of-interest to see it evolve over time.
Using and adapting one of the examples in the documentation:
fs = 3000;
t = 0:1/fs:1-1/fs;
x1 = chirp(t,300,t(end),1300,'quadratic',0,'convex') + ...
randn(size(t))/100;
x2 = exp(2j*pi*100*cos(2*pi*2*t)) + randn(size(t))/100;
[p,f,t] = pspectrum(x2,fs,'spectrogram');
figure
waterfall(f,t,p');
xlabel('Frequency (Hz)')
ylabel('Time (seconds)')
wtf = gca;
wtf.XDir = 'reverse';
view([30 45])
Freq = 500;
figure
plot(t, p(500,:)')
xlabel('Time')
ylabel('Amplitude')
title(sprintf('Frequency = %5d',Freq))
.
  댓글 수: 2
Fred Hollingsworth
Fred Hollingsworth 2020년 11월 19일
Thank you! This is exactly what I needed!
Star Strider
Star Strider 2020년 11월 19일
As always, my pleasure!

댓글을 달려면 로그인하십시오.

추가 답변 (1개)

Mathieu NOE
Mathieu NOE 2020년 11월 19일
hello
this is a typical case were my little code snipset can be useful !!
if you need to refine the frequency resolution, increase NFFT
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FFT parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
NFFT = 1024; %
NOVERLAP = round(0.75*NFFT);
w = hanning(NFFT); % Hanning window / Use the HANN function to get a Hanning window which has the first and last zero-weighted samples.
% spectrogram dB scale
spectrogram_dB_scale = 80; % dB range scale (means , the lowest displayed level is XX dB below the max level)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% options
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% if you are dealing with acoustics, you may wish to have A weighted
% spectrums
% option_w = 0 : linear spectrum (no weighting dB (L) )
% option_w = 1 : A weighted spectrum (dB (A) )
option_w = 0;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% load signal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%[data,Fs]=wavread('Approach_Gear_Drop_Aft Ctr.wav '); %(older matlab)
% or
[data,Fs]=audioread('myWAVaudiofile.wav'); %(newer matlab)
channel = 1;
signal = data(:,channel);
samples = length(signal);
dt = 1/Fs;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 1 : averaged FFT spectrum
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[sensor_spectrum, freq] = pwelch(signal,w,NOVERLAP,NFFT,Fs);
% convert to dB scale (ref = 1)
sensor_spectrum_dB = 20*log10(sensor_spectrum);
% apply A weigthing if needed
if option_w == 1
pondA_dB = pondA_function(freq);
sensor_spectrum_dB = sensor_spectrum_dB+pondA_dB;
my_ylabel = ('Amplitude (dB (A))');
else
my_ylabel = ('Amplitude (dB (L))');
end
figure(1),semilogx(freq,sensor_spectrum_dB);grid
title(['Averaged FFT Spectrum / Fs = ' num2str(Fs) ' Hz / Delta f = ' num2str(freq(2)-freq(1)) ' Hz ']);
xlabel('Frequency (Hz)');ylabel(my_ylabel);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 2 : time / frequency analysis : spectrogram demo
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[sg,fsg,tsg] = specgram(signal,NFFT,Fs,w,NOVERLAP);
% FFT normalisation and conversion amplitude from linear to dB (peak)
sg_dBpeak = 20*log10(abs(sg))+20*log10(2/length(fsg)); % NB : X=fft(x.*hanning(N))*4/N; % hanning only
% apply A weigthing if needed
if option_w == 1
pondA_dB = pondA_function(fsg);
sg_dBpeak = sg_dBpeak+(pondA_dB*ones(1,size(sg_dBpeak,2)));
my_title = ('Spectrogram (dB (A))');
else
my_title = ('Spectrogram (dB (L))');
end
% saturation of the dB range :
% saturation_dB = 60; % dB range scale (means , the lowest displayed level is XX dB below the max level)
min_disp_dB = round(max(max(sg_dBpeak))) - spectrogram_dB_scale;
sg_dBpeak(sg_dBpeak<min_disp_dB) = min_disp_dB;
% plots spectrogram
figure(2);
imagesc(tsg,fsg,sg_dBpeak);colormap('jet');
axis('xy');colorbar('vert');grid
title([my_title ' / Fs = ' num2str(Fs) ' Hz / Delta f = ' num2str(fsg(2)-fsg(1)) ' Hz ']);
xlabel('Time (s)');ylabel('Frequency (Hz)');
function pondA_dB = pondA_function(f)
% dB (A) weighting curve
n = ((12200^2*f.^4)./((f.^2+20.6^2).*(f.^2+12200^2).*sqrt(f.^2+107.7^2).*sqrt(f.^2+737.9^2)));
r = ((12200^2*1000.^4)./((1000.^2+20.6^2).*(1000.^2+12200^2).*sqrt(1000.^2+107.7^2).*sqrt(1000.^2+737.9^2))) * ones(size(f));
pondA = n./r;
pondA_dB = 20*log10(pondA(:));
end

카테고리

Help CenterFile Exchange에서 Spectral Measurements에 대해 자세히 알아보기

제품


릴리스

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by