how to solve the following problem using optimization toolbox?

조회 수: 1 (최근 30일)
Muna Tageldin
Muna Tageldin 2020년 9월 22일
댓글: Mario Malic 2020년 9월 23일
I have this estimation problem where I use maximum likelhood estimation to solve it where the problem has pdf of:
f(x)=m1*(1/(sqrt(2*pi)*o_x)))*exp(-0.5*power(z-ux,2)/o_x^2))+(1-m1)*m1*(1/(sqrt(2*pi)*o_y)))*exp(-0.5*power(z-uy,2)/o_y^2));
both are normal distributions (I want to estimate m1, ux,uy,o_x,o_y) using optimisation toolbox
I used fmincon since I am trying to limit the range of possible values (impost constraints on the values of m1, ux,uy,o_x,o_y)
I used a for loop for the main program.
problem.objective = @(y)norm_likelhood_fun(y,z); %%%%z is the data and y is a vector representing vector of values to be estimated
for j=1:100
% problem.x0=(problem.ub+problem.lb)/2;
problem.x0 = rand(5,1);
[y,feval]=...
fmincon(problem);
%y = run(gs,problem);
y_f(:,j)=y;
end
In each loop iteration, different initial values are used to search for minumum( I know the optimiser is sensitive to initial values). My question is how can I reach the convergence (different initial values lead to the same solution). What is the best algorithm suited for this problem?. How can I visualize the data with optimisation problem I have (contour lines)?
  댓글 수: 4
Muna Tageldin
Muna Tageldin 2020년 9월 23일
whats the best way to visualise the optimisation problem (local and global minumum)?
Mario Malic
Mario Malic 2020년 9월 23일
I don't think it's possible, it's 5D problem. Do you really need 10^-30 on TolX and TolFun?
Issue with your options are, that your MaxIter, TolFun and TolX are from optimset, but you use optimoptions. I don't know what values you get in fval (rename from feval, as feval is a function), so try these options.
options = optimoptions('fmincon','Display','iter-detailed','Algorithm','sqp','MaxIterations',10000, ...
'StepTolerance',10^-10,'TolFun',10^-10,'OptimalityTolerance',1e-12, 'Plotfcn', @optimplotfval);

댓글을 달려면 로그인하십시오.

답변 (0개)

카테고리

Help CenterFile Exchange에서 Genetic Algorithm에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by