The error 'Matrix dimensions must agree' during optimization.How can it be solved?
조회 수: 2 (최근 30일)
이전 댓글 표시
I have the following code where 'Ymeas' is an array of measured values and must be fitted with estimated values-'Yest' meanwhile optimizing K1 using an ode.The objective function is the sum of squares of difference b/w Ymeas and Yest. Ymeas and Yest are 11X2 arrays. It optimizes for a while and then the following error is shown:
'Matrix dimensions must agree.'
function optimize
[K1] = deal(3.5);
Ymeas = [
1 1
0.8696 0.8696
0.7692 0.7692
0.6897 0.6897
0.625 0.625
0.5714 0.5714
0.5263 0.5263
0.4878 0.4878
0.4545 0.4545
0.4255 0.4255
0.4 0.4 ];
T=[0:10:100];
A0=Ymeas(1,1);
B0=Ymeas(1,2);
figure;
plot(T,Ymeas);
hold on;
h = plot(T,Ymeas,'k','linewidth',2);
minERR = Inf;
opts = optimset('fminunc');
opts.LargeScale = 'off';
Xest = fminunc(@(X)objfun(X),[0],opts);
Xest = num2cell(Xest);
[K1] = deal(Xest{:}),
function ERR = objfun(X);
X = num2cell(X);
[K1] = deal(X{:});
[T,Yest] = ode45(@(t,y)[-K1*y(1)*y(2);
-K1*y(1)*y(2)],[T],[A0,B0]);
ERR = sum((Ymeas(:) - Yest(:)).^2);
if ERR < minERR
minERR = ERR;
for n = 1:2; set(h(n),'Ydata',Yest(:,n)); end
drawnow;
end;
end;
end
댓글 수: 2
Walter Roberson
2013년 1월 8일
What are you expecting from your line
[K1] = deal(X{:});
The only point of that I can see at the moment is to issue an error message if X was not a scalar.
채택된 답변
Teja Muppirala
2013년 1월 8일
The problem occurs when K1 is negative. The ODE solver blows up before it can integrate to all your time values. You should specify a constraint that forces K1 to be >= 0. For example, you might use FMINCON instead of FMINUNC.
댓글 수: 6
Alan Weiss
2013년 1월 8일
Xest = fmincon(@(X)objfun(X),[0,0],[],[],[],[],[0,0],[],[],opts);
Or pick a better point than [0,0] for x0.
Alan Weiss
MATLAB mathematical toolbox documentation
추가 답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Least Squares에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!