필터 지우기
필터 지우기

How to calculate accuracy for neural network algorithms?

조회 수: 6 (최근 30일)
sandhya sandhya
sandhya sandhya 2019년 3월 14일
댓글: Osama Tabbakh 2019년 7월 15일
How to calculate accuracy for neural network algorithms?
  댓글 수: 1
Adam
Adam 2019년 3월 14일
I'm pretty sure this is a topic with literally thousands of hits if you google it! Or are you asking specifically about a Matlab coded network, in which case showing some code helps.

댓글을 달려면 로그인하십시오.

채택된 답변

Greg Heath
Greg Heath 2019년 3월 15일
I normalize the mean-square-error
MSE = mse(error) = mse(output-target)
by the minimum MSE obtained when the output is a constant.
If the output is a constant, the MSE is minimized when that constant is
the average of the target. For a 1-D target
NMSE = mse(output-target) / mse(target-mean(target))
= mse(error) / var(target,1)
This is related to the R-square statistic (AKA as R2) via
Rsquare = R2 = 1 - NMSE
Both NMSE and R2 are contained in [0,1].
I have posted zillions of examples in both the NEWSGROUP and ANSWERS.
Just search using
Greg NMSE
Thank you for formally accepting my answer
Greg
  댓글 수: 5
sandhya sandhya
sandhya sandhya 2019년 3월 25일
Input signal with dimension 1*420 was my previous signal ,I forgot to modify the dimension.Now,the input signal with dimension 23*2560 and *.val is the inbuilt file of input signal.If you give command as plot(input),it displays the error.But ,if you give command as
plot(input.val), then it displays the output.Can you please add accuracy commands to my code.
input=load('project1.mat'); 23*2560
target=load('braineeg.mat');
hiddenLayerSize = 10;
net = feedforwardnet(hiddenLayerSize );
net.divideFcn = 'divideind';
net.divideParam.trainInd = 1:1792;
net.divideParam.valInd = 1793:2176;
net.divideParam.testInd = 2177:2560;
net = configure(net,input.val,target.val);
[net,tr] = train(net,input.val,target.val);
view(net)
output = net(input.val);
errors = gsubtract(target.val,output);
performance = perform(net,target.val,output);
view(net)
figure, plotperform(tr)
figure, plottrainstate(tr)
figure, plotconfusion(target.val,output)
[c,cm] = confusion(target.val,output);
figure, ploterrhist(errors)
trainTargets = target.val .* tr.trainMask{1};
valTargets = target.val .* tr.valMask{1};
testTargets = target.val .* tr.testMask{1};
trainPerformance = perform(net,trainTargets,output);
valPerformance = perform(net,valTargets,output);
testPerformance = perform(net,testTargets,output);
YPred = predict(net,input.val);
MSE=mse(output-target.val);
NMSE = MSE / mse(target-mean(target.val));
Osama Tabbakh
Osama Tabbakh 2019년 7월 15일
But what I do not understand is in the way of R-square statistic you calculate with the consideration that the behavior between the target and the output is linear. But when the behavior is nonlinear, then you get high accuracy, although the network produces a large error.

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Sequence and Numeric Feature Data Workflows에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by