Non linear fit with four parameters help.

조회 수: 3 (최근 30일)
Hi
I am looking to fit some data with a model that has four parameters. I am presently using nlinfit, and have two problems. One is that my model returns imaginary numbers, which realistically I don't want. So is there any way to surpress them. Two is that as far as I can tell the fit is not very good. My fourth parameter doesn't change from the initial value and although I haven't looked into it on matlab, i think the residuals are not good. If any one could help that would be much appreciated. Here is some code
clear all;
close all;
close all hidden;
A = uiimport;
clear xdata;
clear ydata;
xdata = A.data(:,1);
ydata = A.data(:,6);
Vdata = A.data(:,5);
Vg = -xdata;
Gd = ydata./Vdata;
x0 = [1E-10;1;1;1E6];
options = optimset('Display','iter',...
'TolFun',1E-100,'TolX',1E-30,'MaxIter',1000);
[beta,resid,J,COVB,mse] = nlinfit(Vg,Gd,@myfun,[x0],options) ;
% [ci se] = nlparci(beta,resid,'covar',COVB);
Gd_new = (((beta(1)*(Vg-beta(2)).^(beta(3)+1)).^(-1))+beta(4)).^(-1);3
plot(Vg,Gd_new,'r',Vg,Gd,'o');
my function is
function F = myfun(a,Vg)
F = ((((a(1).*((Vg-a(2)).^(a(3)+1))).^(-1))+a(4)).^(-1));
end
I'll add some data on in just a sec

댓글을 달려면 로그인하십시오.

답변 (1개)

Vg Ig Vs Is Vd Id
20 3.76E-10 0 -1.54E-10 -0.5 -5.27E-11
19.2 1.94E-10 0 -7.75E-11 -0.5 -3.01E-11
18.4 1.38E-10 0 -6.02E-11 -0.5 -2.18E-11
17.6 1.04E-10 0 -4.81E-11 -0.5 -1.62E-11
16.8 7.92E-11 0 -3.90E-11 -0.5 -1.46E-11
16 6.38E-11 0 -3.51E-11 -0.5 -1.21E-11
15.2 5.05E-11 0 -3.11E-11 -0.5 -9.92E-12
14.4 3.70E-11 0 -2.30E-11 -0.5 -7.64E-12
13.6 2.80E-11 0 -2.05E-11 -0.5 -7.42E-12
12.8 2.57E-11 0 -1.54E-11 -0.5 -3.41E-12
12 1.52E-11 0 -1.28E-11 -0.5 -3.25E-12
11.2 5.05E-12 0 -7.80E-12 -0.5 -2.42E-12
10.4 5.93E-12 0 -7.68E-12 -0.5 -1.99E-12
9.6 1.50E-12 0 -7.00E-12 -0.5 -1.97E-12
8.8 -6.94E-12 0 -3.68E-12 -0.5 -1.14E-12
8 -7.60E-12 0 -4.99E-12 -0.5 -7.20E-13
7.2 -1.23E-11 0 -2.49E-12 -0.5 -1.34E-12
6.4 -1.35E-11 0 -2.45E-12 -0.5 -2.90E-13
5.6 -1.55E-11 0 -1.86E-12 -0.5 -2.10E-13
4.8 -1.75E-11 0 2.90E-13 -0.5 -7.80E-13
4 -2.41E-11 0 1.64E-12 -0.5 3.30E-13
3.2 -2.19E-11 0 2.63E-12 -0.5 3.40E-13
2.4 -2.51E-11 0 6.60E-13 -0.5 4.81E-12
1.6 -3.24E-11 0 7.24E-12 -0.5 2.26E-12
0.8 -3.67E-11 0 7.82E-12 -0.5 5.37E-12
0 -4.93E-11 0 1.52E-11 -0.5 1.08E-11
-0.8 -5.78E-11 0 2.80E-11 -0.5 1.38E-11
-1.6 -8.40E-11 0 4.99E-11 -0.5 1.52E-11
-2.4 -1.63E-10 0 1.12E-10 -0.5 2.81E-11
-3.2 -2.83E-10 0 2.46E-10 -0.5 -1.47E-11
-4 -5.10E-10 0 6.24E-10 -0.5 -1.32E-10
-4.8 -1.02E-09 0 1.47E-09 -0.5 -5.33E-10
-5.6 -1.29E-09 0 2.82E-09 -0.5 -1.40E-09
-6.4 -2.96E-10 0 3.45E-09 -0.5 -2.75E-09
-7.2 -1.84E-10 0 4.80E-09 -0.5 -4.40E-09
-8 -2.15E-10 0 6.86E-09 -0.5 -6.43E-09
-8.8 -1.16E-10 0 9.14E-09 -0.5 -8.85E-09
-9.6 -1.63E-10 0 1.24E-08 -0.5 -1.17E-08
-10.4 -1.87E-10 0 1.52E-08 -0.5 -1.49E-08
-11.2 -2.20E-10 0 1.87E-08 -0.5 -1.83E-08
-12 -2.59E-10 0 2.25E-08 -0.5 -2.21E-08
-12.8 -3.14E-10 0 2.66E-08 -0.5 -2.62E-08
-13.6 -3.50E-10 0 3.12E-08 -0.5 -3.07E-08
-14.4 -3.98E-10 0 3.61E-08 -0.5 -3.56E-08
-15.2 -4.42E-10 0 4.17E-08 -0.5 -4.11E-08
-16 -4.81E-10 0 4.78E-08 -0.5 -4.71E-08
-16.8 -5.64E-10 0 5.45E-08 -0.5 -5.36E-08
-17.6 -5.99E-10 0 6.15E-08 -0.5 -6.06E-08
-18.4 -6.66E-10 0 6.90E-08 -0.5 -6.79E-08
-19.2 -7.33E-10 0 7.65E-08 -0.5 -7.54E-08
-20 -7.92E-10 0 8.43E-08 -0.5 -8.32E-08
-20.8 -8.61E-10 0 9.21E-08 -0.5 -9.08E-08
-21.6 -9.00E-10 0 1.00E-07 -0.5 -9.86E-08
-22.4 -9.56E-10 0 1.08E-07 -0.5 -1.07E-07
-23.2 -1.02E-09 0 1.17E-07 -0.5 -1.15E-07
-24 -1.09E-09 0 1.25E-07 -0.5 -1.24E-07
-24.8 -1.15E-09 0 1.34E-07 -0.5 -1.33E-07
-25.6 -1.22E-09 0 1.43E-07 -0.5 -1.41E-07
-26.4 -1.27E-09 0 1.52E-07 -0.5 -1.50E-07
-27.2 -1.35E-09 0 1.61E-07 -0.5 -1.59E-07
-28 -1.40E-09 0 1.70E-07 -0.5 -1.67E-07
-28.8 -1.45E-09 0 1.78E-07 -0.5 -1.76E-07
-29.6 -1.52E-09 0 1.87E-07 -0.5 -1.85E-07
-30.4 -1.56E-09 0 1.96E-07 -0.5 -1.94E-07
-31.2 -1.61E-09 0 2.05E-07 -0.5 -2.02E-07
-32 -1.67E-09 0 2.14E-07 -0.5 -2.11E-07
-32.8 -1.73E-09 0 2.22E-07 -0.5 -2.20E-07
-33.6 -1.80E-09 0 2.31E-07 -0.5 -2.28E-07
-34.4 -1.86E-09 0 2.39E-07 -0.5 -2.36E-07
-35.2 -1.93E-09 0 2.48E-07 -0.5 -2.45E-07
-36 -1.99E-09 0 2.56E-07 -0.5 -2.53E-07
-36.8 -2.06E-09 0 2.64E-07 -0.5 -2.62E-07
-37.6 -2.13E-09 0 2.73E-07 -0.5 -2.70E-07
-38.4 -2.20E-09 0 2.81E-07 -0.5 -2.78E-07
-39.2 -2.26E-09 0 2.89E-07 -0.5 -2.85E-07
-40 -2.35E-09 0 2.97E-07 -0.5 -2.93E-07
-40.8 -2.43E-09 0 3.05E-07 -0.5 -3.01E-07
-41.6 -2.58E-09 0 3.13E-07 -0.5 -3.09E-07
-42.4 -2.72E-09 0 3.21E-07 -0.5 -3.17E-07
-43.2 -2.72E-09 0 3.29E-07 -0.5 -3.26E-07
-44 -2.81E-09 0 3.37E-07 -0.5 -3.32E-07
-44.8 -2.85E-09 0 3.44E-07 -0.5 -3.41E-07
-45.6 -2.93E-09 0 3.52E-07 -0.5 -3.47E-07
-46.4 -2.95E-09 0 3.60E-07 -0.5 -3.55E-07
-47.2 -3.04E-09 0 3.67E-07 -0.5 -3.62E-07
-48 -3.13E-09 0 3.74E-07 -0.5 -3.69E-07
-48.8 -3.19E-09 0 3.81E-07 -0.5 -3.76E-07
-49.6 -3.26E-09 0 3.88E-07 -0.5 -3.83E-07
-50.4 -3.32E-09 0 3.94E-07 -0.5 -3.89E-07
-51.2 -3.42E-09 0 4.03E-07 -0.5 -3.96E-07
-52 -3.48E-09 0 4.09E-07 -0.5 -4.03E-07
-52.8 -3.54E-09 0 4.15E-07 -0.5 -4.10E-07
-53.6 -3.64E-09 0 4.22E-07 -0.5 -4.16E-07
-54.4 -3.75E-09 0 4.28E-07 -0.5 -4.22E-07
-55.2 -6.32E-09 0 4.34E-07 -0.5 -4.28E-07
-56 -3.94E-09 0 4.41E-07 -0.5 -4.34E-07
-56.8 -4.05E-09 0 4.46E-07 -0.5 -4.40E-07
-57.6 -4.16E-09 0 4.53E-07 -0.5 -4.47E-07
-58.4 -4.26E-09 0 4.58E-07 -0.5 -4.52E-07
-59.2 -4.35E-09 0 4.64E-07 -0.5 -4.58E-07
-60 -4.60E-09 0 4.71E-07 -0.5 -4.64E-07

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Optimization Toolbox에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by