How to do a Four Parameters logistic regression fit without the Curve fitting toolbox?

조회 수: 14 (최근 30일)
I have an 'X' and 'Y' vector (see below) which I want to fit to a Four Parameters logistic model: Y=D+(A-D)/(1+(X/C)^B), but I don't have access to any Matlab toolboxes. How can I do this so I end up with the A,B,C and D parameters?
X=[0.000; 0.012; 0.023; 0.047; 0.094; 0.188; 0.375; 0.750; 1.500; 3.000; 6.000; 12.000]
Y=[0.034; 0.018; 0.023; 0.036; 0.051; 0.065; 0.077; 0.128; 0.224; 0.399; 0.660; 1.0350]

채택된 답변

Torsten
Torsten 2018년 10월 16일
편집: Torsten 2018년 10월 16일
function main
X = [0.000; 0.012; 0.023; 0.047; 0.094; 0.188; 0.375; 0.750; 1.500; 3.000; 6.000; 12.000];
Y = [0.034; 0.018; 0.023; 0.036; 0.051; 0.065; 0.077; 0.128; 0.224; 0.399; 0.660; 1.0350];
p0 = [2 1 1 1]; %Set initial guess for parameter vector
p = fminsearch(@(p)fun(p,X,Y),p0); % Call optimizer for fitting
Ysim = p(4)+(p(1)-p(4))./(1+(X/p(3)).^p(2)); % evaluate final logistic function at measurement points
plot(X,Y,X,Ysim) %plot measured and fitted values
end
function obj = fun(p,X,Y)
Ysim = p(4)+(p(1)-p(4))./(1+(X/p(3)).^p(2)) % evaluate logistic function at measurement points
obj = (Y-Ysim).'*(Y-Ysim) % calculate sum of squared differences between measured and fitted values
end

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Least Squares에 대해 자세히 알아보기

태그

제품


릴리스

R2015b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by