Convert Time Domain Signal Data into Frequency Domain, How to handle the imaginary terms?

조회 수: 29 (최근 30일)
Hi Everyone,
I'm a beginner of MATLAB. I'm having some problems of converting time domain signal into frequency domain.
In time domain, is this the way to plot the graph?
value = [42007935 111212895 184546560 238219725 238219725 184546560 111212895 42007935]; time = [0, 1, 2, 3, 4, 5, 6, 7, 8 ]; plot (time, value);
Then, when i want to plot it in frequency domain, i use the following codes:
fft_Conv = fft (value); plot (time, fft_Conv);
I get a warning: Warning: Imaginary parts of complex X and/or Y arguments ignored.
Could anyone guide me how to plot signal in time domain and frequency domain?
Regards, HJ.C
  댓글 수: 1
shiva prasad kattula
shiva prasad kattula 2016년 3월 5일
편집: shiva prasad kattula 2016년 3월 5일
The frequency-domain representation of a signal carries information about the signal's magnitude and phase at each frequency. This is why the output of the FFT computation is complex. A complex number, x, has a real, x_r, and an imaginary part, x_i, such that x = x_r + ix_i. The magnitude of is computed as sqrt{(x_r^2+x_i^2)}, and the phase of x is computed as arctan{(x_i/x_r)}. You can use MATLAB functions abs and angle to respectively get the magnitude and phase of any complex number.

댓글을 달려면 로그인하십시오.

채택된 답변

Wayne King
Wayne King 2012년 6월 2일
You want to plot the magnitude and phase separately for the complex-valued data. Think of the polar form of a complex number. A few other things: you want to create a frequency vector to use in plotting the frequency domain data (DFT). You may or may not want to center 0 frequency in your Fourier transform, I do this below. Because the mean of your time data is so large, you are going to get a large 0 frequency magnitude in your Fourier transform.
value = [42007935 111212895 184546560 238219725 238219725 184546560 111212895 42007935];
time = 0:7;
stem(time,value,'markerfacecolor',[0 0 1])
title('Time Data'); xlabel('Time'); ylabel('Amplitude');
dftvalue = fft(value);
freq = -pi:(2*pi)/length(value):pi-(2*pi)/length(value);
figure;
stem(freq,abs(fftshift(dftvalue)),'markerfacecolor',[0 0 1])
title('Magnitude of DFT'); xlabel('Frequency'); ylabel('Magnitude');
figure;
stem(freq,angle(fftshift(dftvalue)),'markerfacecolor',[0 0 1])
title('Phase of DFT');
xlabel('Frequency'); ylabel('Magnitude');
% or stem(freq,unwrap(angle(dftvalue)),'markerfacecolor',[0 0 1])
  댓글 수: 7
Tan
Tan 2012년 6월 2일
The values in the value array are actually the result of an impulse with 1V passing through a low pass filtered with frequency coefficients shown below.
Numerator: Denominator:
[3.91719822748777E-02, [1.000]
0.103629842929331,
0.171922134825388,
0.221881476438683,
0.221881476438683,
0.171922134825388,
0.103629842929331,
3.91719822748777E-02]
I intend to see if the frequency response of the impulse after pass through the filter really response like what i expect.
Tan
Tan 2012년 6월 2일
Numerator:
[3.91719822748777E-02,
0.103629842929331,
0.171922134825388,
0.221881476438683,
0.221881476438683,
0.171922134825388,
0.103629842929331,
3.91719822748777E-02]
Denominator:
[1.000]

댓글을 달려면 로그인하십시오.

추가 답변 (3개)

Wayne King
Wayne King 2012년 6월 2일
Then you want to use freqz()
b = [3.91719822748777E-02,
0.103629842929331,
0.171922134825388,
0.221881476438683,
0.221881476438683,
0.171922134825388,
0.103629842929331,
3.91719822748777E-02];
[H,W] = freqz(b,1);
plot(W,20*log10(abs(H)))
  댓글 수: 4
Wayne King
Wayne King 2012년 6월 2일
If you feed it the impulse AND the system is LTI, then yes, the Fourier transform of the impulse response is the frequency response. Just keep in mind that by giving me that b vector above you are asserting that is the impulse response and that system has a finite impulse response
Tan
Tan 2012년 6월 2일
Yes. My system a linear shift-invariant system and the input signal is an impulse.
So if i want to plot the response out when we are just given:
value = [42007935 111212895 184546560 238219725 238219725 184546560 111212895 42007935];
How should i do?
I'm sorry if i ask a repeating question, because i have vague idea on this

댓글을 달려면 로그인하십시오.


Wayne King
Wayne King 2012년 6월 2일
Then you are telling me that
b = [42007935 111212895 184546560 238219725 238219725 184546560 111212895 42007935];
% so
[h,f] = freqz(b,1);
plot(f,20*log10(abs(h)));
Of course if you know the sampling frequency, then you can use that in freqz() to get the response in Hz.
  댓글 수: 9
Tan
Tan 2012년 6월 10일
The last three row of codes, is it something wrong there?

댓글을 달려면 로그인하십시오.


jagadeesh jagadeesh
jagadeesh jagadeesh 2019년 10월 28일
Fs = 1000; % Sampling frequency
T = 1/Fs; % Sample time
L = 1000; % Length of signal
t = (0:L-1)*T; % Time vector
% Sum of a 50 Hz sinusoid and a 120 Hz sinusoid
x = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);
y = x + 2*randn(size(t)); % Sinusoids plus noise
figure(1)
plot(Fs*t(1:50),y(1:50))
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('time (milliseconds)'
NFFT = 2^nextpow2(L); % Next power of 2 from length of y
Y = fft(y,NFFT)/L;
f = Fs/2*linspace(0,1,NFFT/2+1);
% Plot single-sided amplitude spectrum.
figure(2)
plot(f,2*abs(Y(1:NFFT/2+1)))
title('Single-Sided Amplitude Spectrum of y(t)')
xlabel('Frequency (Hz)')
ylabel('|Y(f)|')

카테고리

Help CenterFile Exchange에서 Filter Analysis에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by