이 질문을 팔로우합니다.
- 팔로우하는 게시물 피드에서 업데이트를 확인할 수 있습니다.
- 정보 수신 기본 설정에 따라 이메일을 받을 수 있습니다.
Is the attached paper okay for Feature Extraction of ECG dataset?
조회 수: 1 (최근 30일)
이전 댓글 표시
If it's okay, which wave should I consider in filtered plot of cu01m as current beat?
Plot of filtered cu01m.mat
댓글 수: 13
Star Strider
2016년 2월 23일
It looks like it could work. It uses a radial basis function neural network, and the diagram seems to use the radbas function. (In fact, it looks like it was taken from the Radial Basis Neural Network MATLAB documentation, or the MATLAB diagram using the network they created from it.) You will need to use the Neural Network Toolbox to do that analysis most efficiently. Programming complicated backpropagation neural nets by hand is not fun, even in MATLAB.
Explorer
2016년 2월 23일
Your comment on paper is about feature matching part. What do you think about its feature extraction part?
Star Strider
2016년 2월 23일
They don’t go into significant detail on how they developed their (4x14) matrix, among other things. (You will also need the Wavelet Toolbox to use the db6 wavelet decomposition if you want to reproduce their paper.) They’re not doing very sophisticated rate and rhythm classification — normal sinus rhythm (NSR), ventricular tachycardia (VT), and ventricular fibrillation (VF) are significantly different enough to differentiate with much simpler methods. Besides, the QRS complex does not exist in classical VT or VF, so I have no idea how they would go about detecting it. I would be tempted to use the RBF network and a classifier on the filtered signal without all the preprocessing if I only needed to differentiate NSR, VT, and VF.
Explorer
2016년 2월 23일
Okay thanks. Is it possible to apply classifier without extracting features if I want to differentiate NSR, VT and VF? If so, how to do that?
Star Strider
2016년 2월 23일
Well, you have to extract some features, but the RBF network should be able to do that for you as the input to the classifier. (I actually did EKG classification with a RBF NN classifier once, but so long ago I don’t remember the details.)
Explorer
2016년 2월 23일
Can you please refer me the paper you followed for EKG classification? I haven't studied Neural Networks in my graduation.
Star Strider
2016년 2월 23일
I did not follow a paper. I used Haykin’s book on neural networks and programmed it in FORTRAN myself. (This was before the Neural Network Toolbox first appeared.)
I would search your university library for Haykin’s book and others on RBF networks. If you have the Neural Network Toolbox, start with its documentation (for your MATLAB release) for a comprehensive introduction, then go on from there.
Star Strider
2016년 2월 23일
My pleasure.
EKG analysis is not trivial. I have not ever seen a paper that could do reliable EKG analysis with any degree of reliability or reproducability. Wavelets are likely the best initial analysis tool. Processing the wavelet features to correctly analyse the EKG remains a significant problem, even for the relatively simple task of doing heart-rate variability (HRV) studies, which was my interest at the time. (For that, it’s necessary to detect a normal P-wave preceding the QRS complex in order for that beat to be considered in the HRV analysis. That’s much more challenging than it at first appears.)
Explorer
2016년 2월 24일
What do you think about the method in attached paper? Should I start to code up this?
Star Strider
2016년 2월 24일
That one seems a quite plausible approach, with enough detail and results to convince me that it would work. The MATLAB Statistics Toolbox has the classify and fitcdiscr functions that can do the quadratic discriminant analysis once you have calculated the features.
What book is it from? I’ll look into adding it to my library.
답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 AI for Signals에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!오류 발생
페이지가 변경되었기 때문에 동작을 완료할 수 없습니다. 업데이트된 상태를 보려면 페이지를 다시 불러오십시오.
웹사이트 선택
번역된 콘텐츠를 보고 지역별 이벤트와 혜택을 살펴보려면 웹사이트를 선택하십시오. 현재 계신 지역에 따라 다음 웹사이트를 권장합니다:
또한 다음 목록에서 웹사이트를 선택하실 수도 있습니다.
사이트 성능 최적화 방법
최고의 사이트 성능을 위해 중국 사이트(중국어 또는 영어)를 선택하십시오. 현재 계신 지역에서는 다른 국가의 MathWorks 사이트 방문이 최적화되지 않았습니다.
미주
- América Latina (Español)
- Canada (English)
- United States (English)
유럽
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
아시아 태평양
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)