How to do a Amplitude Adjusted Fourier Transform on time series?

조회 수: 11 (최근 30일)
Mir Sahand
Mir Sahand 2024년 12월 6일
댓글: Paul 2025년 1월 4일
I need to use MATLAB (R2022b) to surrogate my data (1x500 excel) using Amplitude Adjusted Fourier Transform.
Any advice how to do that?

답변 (1개)

Jaimin
Jaimin 2025년 1월 3일
To surrogate your data using the Amplitude Adjusted Fourier Transform (AAFT) in MATLAB, you will need to perform the AAFT algorithm, which involves randomizing the phases of the Fourier transform of your data and then adjusting the amplitude.
For understanding kindly refer following code.
% Step 1: Import Data
filename = 'your_data.xlsx'; % Replace with your file name
data = readtable(filename);
% Ensure data is a row vector
if size(data, 1) > 1
data = data';
end
% Step 2: AAFT Algorithm
% Sort the original data
sortedData = sort(data);
% Randomize the original data
randomizedData = data(randperm(length(data)));
randomizedFFT = fft(randomizedData);
% Randomize the phases
randomizedPhases = angle(randomizedFFT);
amplitudes = abs(randomizedFFT);
randomizedFFT = amplitudes .* exp(1i * randomizedPhases);
% Inverse Fourier Transform
surrogateData = ifft(randomizedFFT, 'symmetric');
% 2.6: Adjust the amplitude by sorting
[~, sortIndex] = sort(surrogateData);
surrogateData(sortIndex) = sortedData;
For more information kindly refer following MathWorks documentation.
  댓글 수: 1
Paul
Paul 2025년 1월 4일
Do you have source for this code/algorithm? I'm curious about a few things.
rng(100);
% Step 1: Import Data
data = 1:10;
data = data(randperm(10));
% Step 2: AAFT Algorithm
% Sort the original data
sortedData = sort(data);
% Randomize the original data
randomizedData = data(randperm(length(data)));
randomizedFFT = fft(randomizedData);
temp = randomizedFFT;
Nothing is being randomized here. All this code does is recreate the randomizedFFT (to withing numerical precision).
% Randomize the phases
randomizedPhases = angle(randomizedFFT);
amplitudes = abs(randomizedFFT);
randomizedFFT = amplitudes .* exp(1i * randomizedPhases);
norm(temp-randomizedFFT)
ans = 8.2441e-15
% Inverse Fourier Transform
surrogateData = ifft(randomizedFFT, 'symmetric');
% 2.6: Adjust the amplitude by sorting
[~, sortIndex] = sort(surrogateData);
surrogateData(sortIndex) = sortedData;
Consequently, surrogateData is identical to randomizedData.
randomizedData
randomizedData = 1×10
2 7 9 6 3 4 10 8 5 1
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
surrogateData
surrogateData = 1×10
2 7 9 6 3 4 10 8 5 1
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
It's unclear as to why any more code is needed after randomizedData is computed.

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Symbolic Math Toolbox에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by