Use trained RL agent to predit output on random test sample

조회 수: 29 (최근 30일)
Praveen Verma
Praveen Verma 2024년 11월 19일 0:37
댓글: Hitesh 2024년 11월 19일 5:52
This is my code
Required_agent=load('G1_Agents.mat', 'agent1', 'agent2','agent3');
test_sample=final_test_data_rearranged;
final_test_sample = reshape(test_sample, [], 1);
fprintf('Required_sample = %d\n', i)
agent1 = Required_agent.agent1;
agent2 = Required_agent.agent2;
agent3 = Required_agent.agent3;
policy1=generatePolicyFunction(agent1);
policy2=generatePolicyFunction(agent2);
policy3=generatePolicyFunction(agent3);
action1 = getAction(policy1,final_test_sample);
action2 = getAction(policy2,final_test_sample);
action3 = getAction(policy3,final_test_sample);
When I run this code, the error is:
Incorrect number or types of inputs or outputs for function getAction.
action1 = getAction(policy1,final_test_sample);
I have cross-checked the final_test_sample; it has the same size as the input used during the training of the RL agent.
  댓글 수: 2
Walter Roberson
Walter Roberson 2024년 11월 19일 0:52
Note that the second input to getAction must be a cell array. We cannot tell from your code what data type final_test_sample is.
Hitesh
Hitesh 2024년 11월 19일 5:52
Could you share the complete code or the file so that we reproduce the error and can further look for root cause of the error ?

댓글을 달려면 로그인하십시오.

답변 (0개)

카테고리

Help CenterFile Exchange에서 Reinforcement Learning에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by