Overwriting the maximum function evaluation

조회 수: 3 (최근 30일)
Jack
Jack 2024년 7월 4일
댓글: Star Strider 2024년 7월 4일
Hi all, I have some data to be fitted with the function (please refer to my code). However, despite manually setting the maximumfunctionevaluation limit, the computer doesn't seem to take it and it says the solver stops prematurely. May I ask what have I done wrong?
%% Preparation
clear;clc
data = importdata("FCPIB-293K-2.5mW-400nm-Jan072021 -ibg -bg -chirp.csv"); % insert file path within parenthesis
%% Preamble
% Fundamental constants
h = 4.0135667696*10^-15; % units: eV/ Hz
c = 3*10^8; % SI units
kB = 8.617333268*10^-5; % units: eV/ K
% Clean up of data to select range of values
wavelength = data(1:end, 1);
delay_t = data(1, 1:end); % conatains all of the delay times
E = (h*c)./(wavelength*10^-9); % contains all of the probe energies
Range_E = E>=1.5 & E<=2.2;
Range_T = delay_t>=0.5 & delay_t<=1000;
% for one delay time
T = find(Range_T);
T_min = min(T);
T_max = max(T);
t = 57; % choose an integer b/w T_min and T_max
delaytime = delay_t(1, t);
disp(delaytime)
% Initial parameter guess and bounds
lb = [0, 293, -1]; ub = [Inf, 1200, 1];
y0 = [2*10^9, 1000, 0.5];
% Data for fitting
E_p = E(Range_E); % selected probe energies
delta_Abs = -1*data(Range_E,t);
delta_Abs_norm = delta_Abs./max(abs(delta_Abs)); % normalised delta_Abs
Range_Efit = E_p>=1.62 & E_p<=max(E_p);
E_fit = E_p(Range_Efit);
delta_Abs_norm_fit = delta_Abs_norm(Range_Efit);
% Fitting function
function F = MB(y, E_fit)
F = y(1).*exp(-(E_fit./(8.617333268*10^-5.*y(2)))) + y(3);
end
%% Curve fitting options
% % Initial parameter guess and bounds
% lb = [0, 293, -1]; ub = [Inf, 800, 1];
% y0 = [1.2*10^9, 700, 0.5];
% lsqcurvefit and choose between different algorithm that lsqcurvefit employs (3C1, comment those lines that are not choosen and uncomment the line that is choosen, if not, matlab will take the last line of "optim_lsq" by default)
optim_lsq = optimoptions('lsqcurvefit', 'Algorithm', 'levenberg-marquardt', 'MaxFunctionEvaluations',10^10, 'MaxIterations', 10^10, 'FunctionTolerance',10^-10, 'StepTolerance', 10^-10);
% optim_lsq = optimoptions('lsqcurvefit', 'Algorithm', 'trust-region-reflective', 'MaxFunctionEvaluations',10^10, 'MaxIterations',10^10, 'FunctionTolerance',10^-20, 'StepTolerance', 10^-20);
% optim_lsq = optimoptions('lsqcurvefit', 'Algorithm', 'interior-point', 'MaxFunctionEvaluations',1000, 'MaxIterations', 1000, 'FunctionTolerance',10^-20, 'StepTolerance', 10^-20);
% Solver for lsqcurvefit
[y, residualnorm, residual, exitflag, output, lambda, jacobian] = lsqcurvefit(@MB, y0, E_fit, delta_Abs_norm_fit, lb, ub);
%% Plot command
plot(E_p, delta_Abs_norm,'Black')
hold on
plot(E_fit, MB(y, E_fit), 'LineWidth', 1.0, 'Color', 'red')
xlabel('Probe Photon Energy (eV)')
ylabel('Normalised \Delta A (a.u.)')
legend('Experimental Data', 'Fitted Curve')
disp(y(1,1))
disp(y(1,2))
disp(y(1,3))

채택된 답변

Star Strider
Star Strider 2024년 7월 4일
The options structure to lsqcurvefit must be the argument to it, since (except for name-value pair arguments), arguments to MATLAB functions are positional.
So in your call to lsqcurvefit, use:
[y, residualnorm, residual, exitflag, output, lambda, jacobian] = lsqcurvefit(@MB, y0, E_fit, delta_Abs_norm_fit, lb, ub, [], [], [], [], [], optim_lsq);
I tested that and it worked. (I also added a ga call to get a better initial estimate of ‘y0’, and then let lsqcurvefit tweak it.)
%% Preparation
clear;clc
data = importdata("FCPIB-293K-2.5...bg -chirp.csv"); % insert file path within parenthesis
%% Preamble
% Fundamental constants
h = 4.0135667696*10^-15; % units: eV/ Hz
c = 3*10^8; % SI units
kB = 8.617333268*10^-5; % units: eV/ K
% Clean up of data to select range of values
wavelength = data(1:end, 1);
delay_t = data(1, 1:end); % conatains all of the delay times
E = (h*c)./(wavelength*10^-9); % contains all of the probe energies
Range_E = E>=1.5 & E<=2.2;
Range_T = delay_t>=0.5 & delay_t<=1000;
% for one delay time
T = find(Range_T);
T_min = min(T);
T_max = max(T);
t = 57; % choose an integer b/w T_min and T_max
delaytime = delay_t(1, t);
disp(delaytime)
0.5976
% Initial parameter guess and bounds
lb = [0, 293, -1]; ub = [Inf, 1200, 1];
y0 = [2*10^9, 1000, 0.5];
% Data for fitting
E_p = E(Range_E); % selected probe energies
delta_Abs = -1*data(Range_E,t);
delta_Abs_norm = delta_Abs./max(abs(delta_Abs)); % normalised delta_Abs
Range_Efit = E_p>=1.62 & E_p<=max(E_p);
E_fit = E_p(Range_Efit);
delta_Abs_norm_fit = delta_Abs_norm(Range_Efit);
% Fitting function
function F = MB(y, E_fit)
F = y(1).*exp(-(E_fit./(8.617333268*10^-5.*y(2)))) + y(3);
end
%% Curve fitting options
% % Initial parameter guess and bounds
% lb = [0, 293, -1]; ub = [Inf, 800, 1];
% y0 = [1.2*10^9, 700, 0.5];
% lsqcurvefit and choose between different algorithm that lsqcurvefit employs (3C1, comment those lines that are not choosen and uncomment the line that is choosen, if not, matlab will take the last line of "optim_lsq" by default)
optim_lsq = optimoptions('lsqcurvefit', 'Algorithm', 'levenberg-marquardt', 'MaxFunctionEvaluations',10^10, 'MaxIterations', 10^10, 'FunctionTolerance',10^-10, 'StepTolerance', 10^-10);
% optim_lsq = optimoptions('lsqcurvefit', 'Algorithm', 'trust-region-reflective', 'MaxFunctionEvaluations',10^10, 'MaxIterations',10^10, 'FunctionTolerance',10^-20, 'StepTolerance', 10^-20);
% optim_lsq = optimoptions('lsqcurvefit', 'Algorithm', 'interior-point', 'MaxFunctionEvaluations',1000, 'MaxIterations', 1000, 'FunctionTolerance',10^-20, 'StepTolerance', 10^-20);
ftns = @(y) norm(delta_Abs_norm_fit - MB(y, E_fit));
y0 = ga(ftns, 3, [], [], [], [], lb, ub)
ga stopped because the average change in the fitness value is less than options.FunctionTolerance.
y0 = 1x3
1.0e+03 * 0.0334 1.1626 0.0000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
% Solver for lsqcurvefit
[y, residualnorm, residual, exitflag, output, lambda, jacobian] = lsqcurvefit(@MB, y0, E_fit, delta_Abs_norm_fit, lb, ub, [], [], [], [], [], optim_lsq);
Local minimum found. Optimization completed because the size of the gradient is less than 1e-4 times the value of the function tolerance.
y
y = 1x3
1.0e+06 * 2.2743 0.0012 -0.0000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
%% Plot command
plot(E_p, delta_Abs_norm,'Black')
hold on
plot(E_fit, MB(y, E_fit), 'LineWidth', 1.0, 'Color', 'red')
xlabel('Probe Photon Energy (eV)')
ylabel('Normalised \Delta A (a.u.)')
legend('Experimental Data', 'Fitted Curve')
disp(y(1,1))
2.2743e+06
disp(y(1,2))
1200
disp(y(1,3))
-0.0551
  댓글 수: 2
Jack
Jack 2024년 7월 4일
Thank you Star!
Star Strider
Star Strider 2024년 7월 4일
As always, my pleasure!

댓글을 달려면 로그인하십시오.

추가 답변 (1개)

Torsten
Torsten 2024년 7월 4일
You didn't include the structure "optim_lsq" in the call to lsqcurvefit.
  댓글 수: 2
Jack
Jack 2024년 7월 4일
May I ask where should I put the "optim_lsq" in the call to lsqcurvefit? Is there a specific position that "optim_lsq" has to take in the call of lsqcurvefit?
Steven Lord
Steven Lord 2024년 7월 4일
Put it in the location of the options input argument in the arguments list shown on the lsqcurvefit documentation page.

댓글을 달려면 로그인하십시오.

제품


릴리스

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by