caculate confidence interval from customized pdf

조회 수: 2 (최근 30일)
苏越 徐
苏越 徐 2024년 3월 19일
댓글: 苏越 徐 2024년 3월 19일
Hi
I'm wondering How can I caculate the confidence interval of customized pdf e.g. Gaussian mixture distribution?
pdf=@(x) w1*normpdf(x,mu1,sigma1)+w2*normpdf(x,mu2,sigma2);
cdf=@(x) integral(pdf,-Inf,x);
As icdf function only support specified distribution, I'm wondering how to caculate the shortest confidence interval?

채택된 답변

David Goodmanson
David Goodmanson 2024년 3월 19일
편집: David Goodmanson 2024년 3월 19일
Hello SX,
Ordinarily to find the cdfs you would have to use numerical integration. In this case for the normal distributions, the cdf function is available. Then you can interpolate using the cdf as the independent variable. Here is an example. In the plot you get a wide minimum which you might expect.
mu1 = 1;
mu2 = 2;
sig1 = 1;
sig2 = 3;
w1 = .3;
w2 = .7;
c = .9; % confidence span, there is probably a better name for this
x = -20:.00001:20;
cdf = w1*normcdf(x,mu1,sig1) +w2*normcdf(x,mu2,sig2);
cdn = linspace(min(cdf),max(cdf)-c,1e4);
xdn = interp1(cdf,x,cdn);
cup = linspace(min(cdf)+c,max(cdf),1e4);
xup = interp1(cdf,x,cup);
figure(1); grid on
plot(xup-xdn)
[x0 ind] = min(xup-xdn);
xdn(ind) % lower end of confidence interval
xup(ind) % upper end of confidence interval
cdn(ind) % lower cdf value
cup(ind) % upper cdf value
% ans = -2.4087
% ans = 6.3858
% ans = 0.0497
% ans = 0.9497
D = xup(ind)-xdn(ind) % the result
cup(ind)-cdn(ind) % check, should be c = confidence span
% D = 8.7945
% ans = 0.9000
% try a different case, get a larger confidence interval
xtest = interp1(cdf,x,[.07 .97]);
Dtest = diff(xtest)
% xtest = -1.8602 7.1554
% Dtest = 9.0156
  댓글 수: 3
David Goodmanson
David Goodmanson 2024년 3월 19일
See what you think of the modified answer above
苏越 徐
苏越 徐 2024년 3월 19일
Thank you David! It' good idea to narrow the range for ends of confidence span and then search for the shortest.

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Descriptive Statistics and Visualization에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by