plotting noise spectrum of the data

조회 수: 18 (최근 30일)
nirala se
nirala se 2021년 8월 30일
댓글: Mathieu NOE 2021년 9월 2일
hii, i have a noisy_data(single column) and a noisy_matrix file(10 nos of columns) for which i want to make the noise spectrum plot.
My data is attached here in the name of data.zip
I tried with https://in.mathworks.com/help/ident/ug/noise-spectrum-plots.html but could not do it as i am new to matlab.
I hope experts may help me on this regard.
Thanks in advance.
  댓글 수: 1
nirala se
nirala se 2021년 8월 30일
Hii experts i am waiting for the answer.Thanks.

댓글을 달려면 로그인하십시오.

답변 (1개)

Mathieu NOE
Mathieu NOE 2021년 8월 31일
hello Nirala
this is my go to fft analysis code for signals
it does fft with averaging and spectrograms
you can modify the nfft and overlap values according to your needs
it's been adapted to both your data files (I added the .txt extension that was originaly missing)
also the sampling frequency is not yet defined - modify it accordingly
check this out :
clc
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% load signal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% data example 1
% signal = readmatrix('noisy_data.txt');
% [samples,channels] = size(signal);
%% data example 2
signal = readmatrix('noisy_matrix.txt');
[samples,channels] = size(signal);
selected_channel = 10; % select your data channel here
signal = signal(:,selected_channel);
Fs = 1000; % to be checked
dt = 1/Fs;
time = (0:samples-1)*dt;
%% decimate (if needed)
% NB : decim = 1 will do nothing (output = input)
decim = 1;
if decim>1
signal = decimate(signal,decim);
Fs = Fs/decim;
end
samples = length(signal);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FFT parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
NFFT = 64; % fft length
OVERLAP = 0.75; % between 0 and 1 max ; buffer overlap = OVERLAP*NFFT
% spectrogram dB scale
spectrogram_dB_scale = 80; % dB range scale (means , the lowest displayed level is XX dB below the max level)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% options
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% if you are dealing with acoustics, you may wish to have A weighted
% spectrums
% option_w = 0 : linear spectrum (no weighting dB (L) )
% option_w = 1 : A weighted spectrum (dB (A) )
option_w = 0;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 1 : averaged FFT spectrum
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[freq, sensor_spectrum] = myfft_peak(signal,Fs,NFFT,OVERLAP);
% convert to dB scale (ref = 1)
sensor_spectrum_dB = 20*log10(sensor_spectrum);
% apply A weigthing if needed
if option_w == 1
pondA_dB = pondA_function(freq);
sensor_spectrum_dB = sensor_spectrum_dB+pondA_dB;
my_ylabel = ('Amplitude (dB (A))');
else
my_ylabel = ('Amplitude (dB (L))');
end
figure(1),plot(freq,sensor_spectrum_dB,'b');grid
title(['Averaged FFT Spectrum / Fs = ' num2str(0.1*round(10*Fs)) ' Hz / Delta f = ' num2str(0.1*round(10*(freq(2)-freq(1)))) ' Hz ']);
xlabel('Frequency (Hz)');ylabel(my_ylabel);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 2 : time / frequency analysis : spectrogram demo
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[sg,fsg,tsg] = specgram(signal,NFFT,Fs,hanning(NFFT),floor(NFFT*OVERLAP));
% FFT normalisation and conversion amplitude from linear to dB (peak)
sg_dBpeak = 20*log10(abs(sg))+20*log10(2/length(fsg)); % NB : X=fft(x.*hanning(N))*4/N; % hanning only
% apply A weigthing if needed
if option_w == 1
pondA_dB = pondA_function(fsg);
sg_dBpeak = sg_dBpeak+(pondA_dB*ones(1,size(sg_dBpeak,2)));
my_title = ('Spectrogram (dB (A))');
else
my_title = ('Spectrogram (dB (L))');
end
% saturation of the dB range :
% saturation_dB = 60; % dB range scale (means , the lowest displayed level is XX dB below the max level)
min_disp_dB = round(max(max(sg_dBpeak))) - spectrogram_dB_scale;
sg_dBpeak(sg_dBpeak<min_disp_dB) = min_disp_dB;
% plots spectrogram
figure(2);
imagesc(tsg,fsg,sg_dBpeak);colormap('jet');
axis('xy');colorbar('vert');grid
title([my_title ' / Fs = ' num2str(0.1*round(10*Fs)) ' Hz / Delta f = ' num2str(0.1*round(10*(fsg(2)-fsg(1)))) ' Hz ']);
xlabel('Time (s)');ylabel('Frequency (Hz)');
function pondA_dB = pondA_function(f)
% dB (A) weighting curve
n = ((12200^2*f.^4)./((f.^2+20.6^2).*(f.^2+12200^2).*sqrt(f.^2+107.7^2).*sqrt(f.^2+737.9^2)));
r = ((12200^2*1000.^4)./((1000.^2+20.6^2).*(1000.^2+12200^2).*sqrt(1000.^2+107.7^2).*sqrt(1000.^2+737.9^2))) * ones(size(f));
pondA = n./r;
pondA_dB = 20*log10(pondA(:));
end
function [freq_vector,fft_spectrum] = myfft_peak(signal, Fs, nfft, Overlap)
% FFT peak spectrum of signal (example sinus amplitude 1 = 0 dB after fft).
% Linear averaging
% signal - input signal,
% Fs - Sampling frequency (Hz).
% nfft - FFT window size
% Overlap - buffer percentage of overlap % (between 0 and 0.95)
[samples,channels] = size(signal);
% fill signal with zeros if its length is lower than nfft
if samples<nfft
s_tmp = zeros(nfft,channels);
s_tmp((1:samples),:) = signal;
signal = s_tmp;
samples = nfft;
end
% window : hanning
window = hanning(nfft);
window = window(:);
% compute fft with overlap
offset = fix((1-Overlap)*nfft);
spectnum = 1+ fix((samples-nfft)/offset); % Number of windows
% % for info is equivalent to :
% noverlap = Overlap*nfft;
% spectnum = fix((samples-noverlap)/(nfft-noverlap)); % Number of windows
% main loop
fft_spectrum = 0;
for i=1:spectnum
start = (i-1)*offset;
sw = signal((1+start):(start+nfft),:).*(window*ones(1,channels));
fft_spectrum = fft_spectrum + (abs(fft(sw))*4/nfft); % X=fft(x.*hanning(N))*4/N; % hanning only
end
fft_spectrum = fft_spectrum/spectnum; % to do linear averaging scaling
% one sidded fft spectrum % Select first half
if rem(nfft,2) % nfft odd
select = (1:(nfft+1)/2)';
else
select = (1:nfft/2+1)';
end
fft_spectrum = fft_spectrum(select,:);
freq_vector = (select - 1)*Fs/nfft;
end
  댓글 수: 1
Mathieu NOE
Mathieu NOE 2021년 9월 2일
hello Nirala
if my answer has fullfilled your expectations, do you mind accepting it ?
thanks

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Spectral Measurements에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by