This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

Parallel Computing Toolbox Functions - Alphabetical List

Alphabetical List By Category
addAttachedFilesAttach files or folders to parallel pool
afterAllSpecify a function to invoke after all parallel.Futures complete
afterEachDefine a function to call when new data is received on a DataQueue
afterEachSpecify a function to invoke after each parallel.Future completes
arrayfunApply function to each element of array on GPU
batchRun MATLAB script or function on worker
bsxfunBinary singleton expansion function for gpuArray
cancelCancel queued or running future
cancelCancel job or task
changePasswordPrompt user to change MJS password
classUnderlyingClass of elements within gpuArray or distributed array
clearRemove objects from MATLAB workspace
codistributedCreate codistributed array from replicated local data
codistributedAccess elements of arrays distributed among workers in parallel pool
codistributed.buildCreate codistributed array from distributed data
codistributed.cellCreate codistributed cell array
codistributed.colonDistributed colon operation
codistributed.spallocAllocate space for sparse codistributed matrix
codistributed.speyeCreate codistributed sparse identity matrix
codistributed.sprandCreate codistributed sparse array of uniformly distributed pseudo-random values
codistributed.sprandnCreate codistributed sparse array of uniformly distributed pseudo-random values
codistributorCreate codistributor object for codistributed arrays
codistributor1d1-D distribution scheme for codistributed array
codistributor2dbc2-D block-cyclic distribution scheme for codistributed array
codistributor2dbc.defaultLabGridDefault computational grid for 2-D block-cyclic distributed arrays
CompositeCreate Composite object
CompositeAccess nondistributed variables on multiple workers from client
createCommunicatingJobCreate communicating job on cluster
createJobCreate independent job on cluster
createTaskCreate new task in job
CUDAKernelKernel executable on GPU
datastoreCreate datastore for large collections of data
deleteRemove job or task object from cluster and memory
delete (Pool)Shut down parallel pool
demoteDemote job in cluster queue
diaryDisplay or save Command Window text of batch job
distributedAccess elements of distributed arrays from client
distributedCreate distributed array from data in the client workspace or a datastore
distributed.cellCreate distributed cell array
distributed.spallocAllocate space for sparse distributed matrix
distributed.speyeCreate distributed sparse identity matrix
distributed.sprandCreate distributed sparse array of uniformly distributed pseudo-random values
distributed.sprandnCreate distributed sparse array of normally distributed pseudo-random values
dloadLoad distributed arrays and Composite objects from disk
dsaveSave workspace distributed arrays and Composite objects to disk
existCheck whether Composite is defined on workers
existsOnGPUDetermine if gpuArray or CUDAKernel is available on GPU
eyeIdentity matrix
falseArray of logical 0 (false)
fetchNextRetrieve next available unread FevalFuture outputs
fetchOutputsRetrieve all output arguments from Future
fetchOutputsRetrieve output arguments from all tasks in job
fevalEvaluate kernel on GPU
findJobFind job objects stored in cluster
findTaskTask objects belonging to job object
forfor-loop over distributed range
gatherTransfer distributed array or gpuArray to local workspace
gcatGlobal concatenation
gcpGet current parallel pool
getAttachedFilesFolderFolder into which AttachedFiles are written
getCodistributorCodistributor object for existing codistributed array
getCurrentClusterCluster object that submitted current task
getCurrentJobJob object whose task is currently being evaluated
getCurrentTaskTask object currently being evaluated in this worker session
getCurrentWorkerWorker object currently running this session
getDebugLogRead output messages from job run in CJS cluster
getJobClusterDataGet specific user data for job on generic cluster
getJobFolderFolder on client where jobs are stored
getJobFolderOnClusterFolder on cluster where jobs are stored
getLocalPartLocal portion of codistributed array
getLogLocationLog location for job or task
globalIndicesGlobal indices for local part of codistributed array
gopGlobal operation across all workers
gplusGlobal addition
gpuArrayCreate array on GPU
gpuArrayArray stored on GPU
gpuDeviceQuery or select GPU device
GPUDeviceGraphics processing unit (GPU)
gpuDeviceCountNumber of GPU devices present
GPUDeviceManagerManager for GPU Devices
gputimeitTime required to run function on GPU
helpHelp for toolbox functions in Command Window
InfArray of infinity
isaUnderlyingTrue if distributed array's underlying elements are of specified class
iscodistributedTrue for codistributed array
isCompleteTrue if codistributor object is complete
isdistributedTrue for distributed array
isequalTrue if futures have same ID
isequalTrue if clusters have same property values
isreplicatedTrue for replicated array
jobStartupFile for user-defined options to run when job starts
labBarrierBlock execution until all workers reach this call
labBroadcastSend data to all workers or receive data sent to all workers
labindexIndex of this worker
labProbeTest to see if messages are ready to be received from other worker
labReceiveReceive data from another worker
labSendSend data to another worker
labSendReceiveSimultaneously send data to and receive data from another worker
lengthLength of object array
listAutoAttachedFilesList of files automatically attached to job, task, or parallel pool
loadLoad workspace variables from batch job
logoutLog out of MJS cluster
mapreduceProgramming technique for analyzing data sets that do not fit in memory
mapreducerDefine parallel execution environment for mapreduce and tall arrays
methodsList functions of object class
mexcudaCompile MEX-function for GPU computation
mpiLibConfLocation of MPI implementation
mpiprofileProfile parallel communication and execution times
mpiSettingsConfigure options for MPI communication
mxGPUArrayType for MATLAB gpuArray
mxGPUCopyFromMxArrayCopy mxArray to mxGPUArray
mxGPUCopyGPUArrayDuplicate (deep copy) mxGPUArray object
mxGPUCopyImag Copy imaginary part of mxGPUArray
mxGPUCopyReal Copy real part of mxGPUArray
mxGPUCreateComplexGPUArrayCreate complex GPU array from two real gpuArrays
mxGPUCreateFromMxArrayCreate read-only mxGPUArray object from input mxArray
mxGPUCreateGPUArrayCreate mxGPUArray object, allocating memory on GPU
mxGPUCreateMxArrayOnCPUCreate mxArray for returning CPU data to MATLAB with data from GPU
mxGPUCreateMxArrayOnGPUCreate mxArray for returning GPU data to MATLAB
mxGPUDestroyGPUArrayDelete mxGPUArray object
mxGPUGetClassIDmxClassID associated with data on GPU
mxGPUGetComplexityComplexity of data on GPU
mxGPUGetDataRaw pointer to underlying data
mxGPUGetDataReadOnlyRead-only raw pointer to underlying data
mxGPUGetDimensionsmxGPUArray dimensions
mxGPUGetNumberOfDimensionsSize of dimension array for mxGPUArray
mxGPUGetNumberOfElementsNumber of elements on GPU for array
mxGPUIsSameDetermine if two mxGPUArrays refer to same GPU data
mxGPUIsSparseDetermine if mxGPUArray contains sparse GPU data
mxGPUIsValidGPUDataDetermine if mxArray is pointer to valid GPU data
mxGPUSetDimensionsModify number of dimensions and size of each dimension
mxInitGPUInitialize MATLAB GPU library on currently selected device
mxIsGPUArrayDetermine if mxArray contains GPU data
NaNArray of Not-a-Numbers
numlabsTotal number of workers operating in parallel on current job
numpartitionsNumber of datastore partitions
onesArray of ones
pagefunApply function to each page of array on GPU
parallel.ClusterAccess cluster properties and behaviors
parallel.cluster.HadoopCreate Hadoop cluster object
parallel.cluster.HadoopHadoop cluster for mapreducer, mapreduce and tall arrays
parallel.clusterProfiles Names of all available cluster profiles
parallel.defaultClusterProfileExamine or set default cluster profile
parallel.exportProfileExport one or more profiles to file
parallel.FutureRequest function execution on parallel pool workers or MATLAB client
parallel.gpu.CUDAKernelCreate GPU CUDA kernel object from PTX and CU code
parallel.importProfileImport cluster profiles from file
parallel.JobAccess job properties and behaviors
parallel.PoolAccess parallel pool
parallel.pool.ConstantBuild parallel.pool.Constant from data or function handle
parallel.pool.DataQueueClass that enables sending and listening for data between client and workers
parallel.pool.PollableDataQueue Class that enables sending and polling for data between client and workers
parallel.TaskAccess task properties and behaviors
parallel.WorkerAccess worker that ran task
parclusterCreate cluster object
parfevalExecute function asynchronously on parallel pool worker
parfevalOnAllExecute function asynchronously on all workers in parallel pool
parforExecute for-loop iterations in parallel on workers in parallel pool
parpoolCreate parallel pool on cluster
partitionPartition a datastore
pausePause MATLAB job scheduler queue
pctconfigConfigure settings for Parallel Computing Toolbox client session
pctRunDeployedCleanupClean up after deployed parallel applications
pctRunOnAllRun command on client and all workers in parallel pool
ploadLoad file into parallel session
pmodeInteractive Parallel Command Window
poll Retrieve data sent from a worker
poolStartupFile for user-defined options to run on each worker when parallel pool starts
promotePromote job in MJS cluster queue
psaveSave data from communicating job session
randArray of rand values
randiArray of random integers
randnArray of randn values
recreateCreate new job from existing job
redistributeRedistribute codistributed array with another distribution scheme
RemoteClusterAccessConnect to schedulers when client utilities are not available locally
resetReset GPU device and clear its memory
resumeResume processing queue in MATLAB job scheduler
saveAsProfileSave cluster properties to specified profile
saveProfileSave modified cluster properties to its current profile
sendSend data from worker to client using a data queue
setConstantMemorySet some constant memory on GPU
setJobClusterDataSet specific user data for job on generic cluster
shutdown Shut down cloud cluster
sizeSize of object array
sparseCreate sparse distributed or codistributed matrix
spmdExecute code in parallel on workers of parallel pool
startStart cloud cluster
submitQueue job in scheduler
subsasgnSubscripted assignment for Composite
subsrefSubscripted reference for Composite
tallCreate tall array
taskFinishUser-defined options to run on worker when task finishes
taskStartupUser-defined options to run on worker when task starts
ticBytesStart counting bytes transferred within parallel pool
tocBytesRead how many bytes have been transferred since calling ticBytes
trueArray of logical 1 (true)
updateAttachedFilesUpdate attached files or folders on parallel pool
waitWait for futures to complete
waitWait for job to change state
wait (cluster)Wait for cloud cluster to change state
wait (GPUDevice)Wait for GPU calculation to complete
writeWrite distributed data to an output location
zerosArray of zeros