이 번역 페이지는 최신 내용을 담고 있지 않습니다. 최신 내용을 영문으로 보려면 여기를 클릭하십시오.
딥러닝을 사용한 신호 처리
Deep Learning Toolbox™를 Signal Processing Toolbox™, Wavelet Toolbox™, Radar Toolbox 또는 DSP System Toolbox™와 함께 사용하여 신호 처리에 딥러닝을 적용합니다. 오디오 및 음성 처리 응용 분야에 대해서는 딥러닝을 사용한 오디오 처리 항목을 참조하십시오. 무선 통신 응용 분야에 대해서는 딥러닝을 사용한 무선 통신 항목을 참조하십시오.
앱
신호 레이블 지정기 | 관심 있는 신호 특성, 신호 영역, 신호 지점에 레이블 지정 및 특징 추출 |
함수
블록
Wavelet Scattering | Model wavelet scattering network in Simulink |
도움말 항목
- Detect Air Compressor Sounds in Simulink Using Wavelet Scattering (DSP System Toolbox)
Use the Wavelet Scattering block and a pretrained deep learning network to classify audio signals.
- Maritime Clutter Suppression with Neural Networks (Radar Toolbox)
Train and evaluate a convolutional neural network to remove clutter returns from maritime radar PPI images using the Deep Learning Toolbox™.
- Signal Recovery with Differentiable Scalograms and Spectrograms (Signal Processing Toolbox)
Use differentiable time-frequency transforms to recover a time-domain signal without the need for phase information or transform inversion.
- Signal Source Separation Using W-Net Architecture (Signal Processing Toolbox)
Use a deep learning network to separate two mixed signal sources.
- Pedestrian and Bicyclist Classification Using Deep Learning (Radar Toolbox)
Classify pedestrians and bicyclists based on their micro-Doppler characteristics using deep learning and time-frequency analysis.
- Radar and Communications Waveform Classification Using Deep Learning (Radar Toolbox)
Classify radar and communications waveforms using the Wigner-Ville distribution (WVD) and a deep convolutional neural network (CNN).
- Label Radar Signals with Signal Labeler (Radar Toolbox)
Label the time and frequency features of pulse radar signals with added noise.
- Radar Target Classification Using Machine Learning and Deep Learning (Radar Toolbox)
Classify radar returns using machine and deep learning approaches.
- Automate Signal Labeling with Custom Functions (Signal Processing Toolbox)
Use Signal Labeler to locate and label QRS complexes and R peaks of ECG signals.
- Crack Identification from Accelerometer Data (Wavelet Toolbox)
Use wavelet and deep learning techniques to detect transverse pavement cracks and localize their position.
- Create Labeled Signal Sets Iteratively with Reduced Human Effort (Signal Processing Toolbox)
Use deep learning to decrease the human effort required to label signals.
- Label Signal Attributes, Regions of Interest, and Points (Signal Processing Toolbox)
Use Signal Labeler to label attributes, regions, and points of interest in a set of whale songs.
- Automate Signal Labeling with Custom Functions (Signal Processing Toolbox)
Use Signal Labeler to locate and label QRS complexes and R peaks of ECG signals.
- Classify Arm Motions Using EMG Signals and Deep Learning (Signal Processing Toolbox)
Classify arm motions using labeled EMG signals and a long short-term memory network.
- GPU Acceleration of Scalograms for Deep Learning (Wavelet Toolbox)
Use your GPU to accelerate feature extraction for signal classification.
- Denoise EEG Signals Using Deep Learning Regression with GPU Acceleration (Signal Processing Toolbox)
Remove EOG noise from EEG signals using deep learning regression.