This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.


(To be removed) Construct constant modulus algorithm (CMA) object

cma will be removed in a future release. Use comm.LinearEqualizer or comm.DecisionFeedback instead.


alg = cma(stepsize)
alg = cma(stepsize,leakagefactor)


The cma function creates an adaptive algorithm object that you can use with the lineareq function or dfe function to create an equalizer object. You can then use the equalizer object with the equalize function to equalize a signal. To learn more about the process for equalizing a signal, see Equalization.


After you use either lineareq or dfe to create a CMA equalizer object, you should initialize the equalizer object's Weights property with a nonzero vector. Typically, CMA is used with differential modulation; otherwise, the initial weights are very important. A typical vector of initial weights has a 1 corresponding to the center tap and 0s elsewhere.

alg = cma(stepsize) constructs an adaptive algorithm object based on the constant modulus algorithm (CMA) with a step size of stepsize.

alg = cma(stepsize,leakagefactor) sets the leakage factor of the CMA. leakagefactor must be between 0 and 1. A value of 1 corresponds to a conventional weight update algorithm, while a value of 0 corresponds to a memoryless update algorithm.


The table below describes the properties of the CMA adaptive algorithm object. To learn how to view or change the values of an adaptive algorithm object, see Equalization.

AlgTypeFixed value, 'Constant Modulus'
StepSizeCMA step size parameter, a nonnegative real number
LeakageFactorCMA leakage factor, a real number between 0 and 1


collapse all

Use the constant modulus algorithm (CMA) to create an adaptive equalizer object.

Set the number of weights and the step size for the equalizer.

nWeights = 1;
stepSize = 0.1;

Create an adaptive algorithm object using the cma function.

alg = cma(stepSize);

Construct a linear equalizer using the algorithm object.

eqObj = lineareq(nWeights,alg)
eqObj =

                  EqType: 'Linear Equalizer'
                 AlgType: 'Constant Modulus'
                nWeights: 1
             nSampPerSym: 1
                SigConst: [-1 1]
                StepSize: 0.1000
           LeakageFactor: 1
                 Weights: 0
            WeightInputs: 0
    ResetBeforeFiltering: 1
     NumSamplesProcessed: 0


Referring to the schematics in Equalization, define w as the vector of all weights wi and define u as the vector of all inputs ui. Based on the current set of weights, w, this adaptive algorithm creates the new set of weights given by

(LeakageFactor) w + (StepSize) u*e

where the * operator denotes the complex conjugate.

Compatibility Considerations

expand all

Not recommended starting in R2019a


[1] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle River, NJ, Prentice-Hall, 1996.

[2] Johnson, Richard C., Jr., Philip Schniter, Thomas. J. Endres, et al., “Blind Equalization Using the Constant Modulus Criterion: A Review,” Proceedings of the IEEE, Vol. 86, October 1998, pp. 1927–1950.

Introduced before R2006a