=
©)
2
>
<

Contents

aTag el [V ox 1 o] 4 I VR RTURRURTR 3
L0 == 14 T TN 2 2 | N 4
AlIGNEA RETEIENCES....eeeiii ittt e e e e e e e e e e e e e st eeeeeeeessassaaeaeaeaeesaaananreeeaaesesanns 6
= T 0TI € o 1H] o 1 SRR 8
=T T O ST SPPEPSTRSTPN 9
LaNE BOUNGAIES ...ttt ettt et b e bt ettt et e b e e b e e ehe e e meeenbeebeesbeesaeeanneans 13
ParametriC ATITIDULESottt e e sttt e st e et e e sae e e ete e e eneeeenteeeeneeeenneeeneean 14
Y1 2= T - - SO 15
L0 oo AT I OO PSP PTPTPTPPI 17
Lane Markings and Other ASSEE TYPESvuieiiiiiie ettt et ste e st e e erae e sbeeeneeas 22
Create the Scene in ROAARUNNETcoiiiiiiiie ittt ettt e e saeesneeeneeens 28
Recommended Workflow to Build RRHD IMaPccciiiiiieiiiieie et 30
Example: HD Map t0 RRHDoiiiiiiiiiee ettt ettt et e e e e mee e e eee e emteeemneeeeneeeenneeeaneeeanee 33
ADOUE TNE AUTNOT ...ttt e e ab et e e s b bt e e e s abb e e e e annaeeeeannneeeean 46

" MathWorks 2

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

Introduction

High-definition (HD) maps play an important role in Automated Driving. HD maps provide centimeter
accuracy to help algorithms understand where the vehicle is in relation to known elements in the real
world. Many localization and path planning algorithms rely on this data while the vehicle is in motion. At
the same time, development of other vehicle algorithms often relies on simulation for testing and
validation before deployment onto a vehicle in the real world. Using accurate, known, virtual environments
in which to test allows algorithm development to advance more quickly than only testing in-situ. These
digital twins can help developers find and fix problems faster and easier because the environment in
which an incident has occurred, or an algorithm is known to struggle can be used repeatedly and reliably.
Digital twins also allow engineers to test rare edge cases that may be too dangerous for real-world testing
or are difficult to recreate in-situ.

HD maps contain most of the relevant information required to create accurate virtual representations of
real-world road networks, including signs, traffic lights, buildings, foliage, and many other permanent
stationary objects relevant to the roadway. However, many simulators do not directly ingest HD maps.
Rather, they look to standards like OpenDRIVE or FBX to encode the information for their consumption.

MathWorks provides RoadRunner, an interactive editor, for scene and scenario generation. RoadRunner
also provides an API for users to interact with it through the MATLAB language and Google’s Remote
Procedure Call (gRPC) with protocol buffers (protobuf). Users can quickly and easily create scenes and
scenarios from scratch, or from existing sources such as custom HD maps, Standard Definition (SD)
maps, satellite imagery, and sensor data from vehicle drives. RoadRunner also provides a means of
generating OpenDRIVE, FBX, and other standard file formats from any scene. Therefore, the user can
quickly and easily create digital twins for use in many available simulators.

Through MATLAB and gRPC protobuf APIs, users can create and manipulate an object called RoadRunner
High-Definition (RRHD) map. When a user pulls in data from a map vendor such as TomTom, HERE-HD,
Zenrin ZD, DMP, or MapMylnda, the information is encoded in the RRHD map object. If a user has sensor
data from which they would like to recreate a scene, they can convert that information by using the RRHD
map. If the user has a scene in RoadRunner and wants to enhance the scene with additional information
on buildings, foliage, and other static objects obtained through other sources like aerial imagery or
OpenStreetMaps, the information can be easily transformed to RRHD and merge with an an existing
scene or road network. Additionally, RRHD maps can provide the necessary (ground truth) information
for localization and path planning algorithms and V2X applications.

Often, the user will interact with the RoadRunner user interface to manually create a scene, whether from
scratch or from existing data such as a supported HD map. However, the user may also elect to interact
with RoadRunner through the provided APlIs. For instance, the user may wish to create a scene and a
large number of variations on that scene. Alternatively, the user may have access to data or map vendor
for which RoadRunner does not support direct import.

This paper will discuss how to build up a RoadRunner High-Definition map using MATLAB APIs. We will
provide a detailed example of building a roadway from scratch, highlighting the features for each of the
RRHD map properties. Then, we will demonstrate how to create a digital twin for a segment of roadway
from HD map data. This example assumes the user has programmatic access to all necessary data from
the HD map of choice. Throughout the paper, we will address how to avoid common pitfalls and provide
best practices.

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://www.mathworks.com/help/roadrunner/matlab-functions-for-scenes.html
https://www.mathworks.com/help/roadrunner/grpc-api-for-scenes.html
https://www.mathworks.com/help/roadrunner/grpc-api-for-scenes.html
https://www.mathworks.com/help/roadrunner/export-scenes.html
https://www.mathworks.com/help/roadrunner/scenebuilder/build-scenes-by-using-tomtom-hd-map-data.html
https://www.mathworks.com/help/roadrunner/scenebuilder/build-scenes-by-using-here-hd-live-map-data.html
https://www.mathworks.com/help/driving/ug/import-zenrin-roads-into-driving-scenario.html
https://www.mathworks.com/help/driving/ref/drivingscenario.getroadrunnerhdmap.html
https://www.mathworks.com/help/driving/ref/roadrunnerhdmap.html
https://www.mathworks.com/help/driving/ug/generate-scene-with-traffic-signs-using-recorded-sensor-data.html
https://www.mathworks.com/help/driving/ug/generate-scene-with-traffic-signs-using-recorded-sensor-data.html
https://www.mathworks.com/products/roadrunner-scene-builder.html#:~:text=Unreal%C2%AE%20Engine.-,Product%20Highlights,-Build%20Scenes%20from
https://www.mathworks.com/help/roadrunner/ug/create-roads-around-imported-gis-assets.html
https://www.mathworks.com/help/roadrunner/ug/build-roads-using-openstreetmap-data.html?searchHighlight=openstreetmapdata&s_tid=srchtitle_support_results_2_openstreetmapdata

Creating RRHD

RRHD is a data model created specifically to translate HD Map information into RoadRunner ingestible
information. It codifies much of the static information available in HD Maps, but it does not accept
dynamic information such as traffic and weather. The power of RRHD is that if the one has programmatic
access to the information in an HD map, it is relatively straightforward to translate it and create a scene
in RoadRunner.

Despite the fact there is no standard for defining HD maps, they have a few basic traits in common. They
use the concept of connectivity through nodes and edges to define the underlying road graph network.
This connectivity brings together the more detailed pieces of the road defined in other layers of the map.
HD maps use the concept of geometry to precisely define the sizes and shapes of the roads, lanes,
markings, signs, and objects they codify. Often, HD maps will bundle lanes together in a lane group. This
helps define the roadway. Lane markings and borders are connected to lanes, and objects like signs,
signals and barriers also connect to lanes or lane groups.

RRHD also utilizes these concepts. The biggest difference between RRHD and most HD maps is that
RRHD omits the graph nodes and edges. Instead, RRHD defines connectivity through lanes via end-to-end
and side-to-side connections. This removes a layer of complexity from the RRHD map. If the user wishes
to create only a portion of a roadway, however, they will be best served by using the HD map graph
network to extract the information they need before they create the RRHD map.

MATLAB provides methods to define the RoadRunner High-definition map. The RRHD map is encoded as
a MATALB object with several properties that are also objects with their own properties. Many of these
property objects share the same base properties. This section will describe these properties and how to
effectively use them to create a simple RRHD map for a generic section of road.

We will first create a simple example roadway to demonstrate the various properties of the RRHD map.
This road will contain five road segments (North, West, South, East, and North/South) with one junction
created by roads crossing (between segments 4 and 5), and the other junction explicitly defined using
the RRHD map (between 1, 2, 3, and 4).

\\5
Nath/

Sm\h)
[2 / [4 = Wi 4 A
(West) (East) N b (East)

Figure 1: Simple roadway example to demonstrate the various features of the RRHD map.

Create an empty RRHD map
To create an empty RRHD map, call the roadrunnerHDMap function. You may provide any or all required
information. We will only give an Author here. When working with data from a real-world map, you will

-} MathWorks 4

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://www.mathworks.com/help/roadrunner/ref/roadrunnerhdmap.html

need to provide the GeoReference as the geographic origin of your map. This will be shown in the more
detailed Example: HD Map to RRHD.

rrMap = roadrunnerHDMap (Author="kmcgarri")

Command Window

>> rrMap = roadrunnerHDMap (Author="kmcgarri™)

rrMap =

roadrunnerHDMap with properties:

Author:
GeoReference:
GeographicBoundary:
Lanes:
SpeedLimits:
LaneBoundaries:
LaneGroups:
LaneMarkings:
Junctions:
BarrierTypes:
Barriers:
SignTypes:

Signs:
StaticObjectTypes:
StaticObjects:
StencilMarkingTypes:
StencilMarkings:
CurveMarkingTypes:
CurveMarkings:
SignalTypes:
Signals:

Figure 2: RRHD map structure

References

“kmcgarri”
[e o]
[]

[ex1
[ex1
[ex1
[ex1
[ex1
[ex1
[ex1
[ex1
[ex1
[ex1
[ex1
[ex1

roadrunner.
roadrunner.
roadrunner.
roadrunner.
roadrunner.
roadrunner.
roadrunner.
roadrunner.
roadrunner.
roadrunner.
roadrunner.
roadrunner.
roadrunner.
roadrunner.
roadrunner.
roadrunner.
roadrunner.
roadrunner.

.Lane]
.SpeedLimit]
.LaneBoundary]
.LaneGroup]
.LaneMarking]
.Junction]
.BarrierType]
.Barrier]
.SignType]

.Sign]
.StaticObjectType]
.StaticObject]
.StencilMarkingType]
.StencilMarking]
.CurveMarkingType]
.CurveMarking]
.SignalType]
.Signal]

An important concept for RRHD maps is the Reference. Many components of the RRHD map, (e.g., Lane
Groups, Lanes, Lane Boundaries, Signs, Junctions, Barriers, Static Objects, Stencil Markings, Curved
Markings, and Signals) have references to other objects created in the RRHD map. A reference object is
the simplest object in the RRHD map. It contains the ID of the object being referenced.

Create a Sample Reference

As an example, assume we have created a lane object for the east bound lane in the lane group on the
west side of a junction. The lane group needs the reference object to that lane.

EastBoundLaneRefW = roadrunner.hdmap.Reference (ID="LnGrW_EastBnd")

-} MathWorks 5

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.reference.html

Command Window

>> EastBoundLaneRefW = roadrunner.hdmap.Reference(ID="LnGrW_ EastBnd")

EastBoundLaneRefW =
Reference with properties:

ID: "LnGrW_EastBnd"

Figure 3: RRHD map Reference object structure

Even though there are no other properties, the ID is expected as a name, value pair. The IDs must be given

as a string scalar ("LnGrW EastBnd", "546776") or character vector ('LnGrW EastBnd',
'546776").

Pitfall

Every object lane group, lane, lane marking, sign, junction, barrier, etc.) must have a unique ID. If the

IDs are not unique, RoadRunner will only create the first encountered instance of the object with a
given ID in the RRHD map.

Recommendation

HD maps often provide unique IDs for each object. Use those IDs when automatically creating scenes
from HD maps.

Aligned References

Another important concept for RRHD is an aligned reference. When creating lanes and lane groups, the
logical and geometric alignment of these objects with respect to each other is important. Alignment is
defined relative to the object receiving the reference. As will be shown below, the lane group object has

a property called Lanes, which is an array of Aligned References referring to the lanes that make up the
lane group.

Create a Sample Aligned Reference

Assume we now want to connect our east bound lane to the lane group. As will be discussed in Lane
Groups the Lanes property contains a list of Aligned References to all the lanes belonging to the lane
group. We will add the Aligned Reference to the lane group object LaneGroupW.

LaneGroupW.Lanes (end+1) =
roadrunner.hdmap.AlignedReference (Reference=EastBoundLaneRefW,

} MathWorks 6

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.alignedreference.html

Command Window
>> roadrunner.hdmap.AlignedReference(Reference=EastBoundLaneReflW, Alignment="Forward")

ans =
AlignedReference with properties:

Reference: [1x1 roadrunner.hdmap.Reference]
Alignment: Forward

>> LaneGroupW.Lanes(end)
ans =
AlignedReference with properties:

Reference: [1x1l roadrunner.hdmap.Reference]
Alignment: Forward

Figure 4: RRHD AlignedReference object structure.

The Reference property receives the Reference object we created in the References section above. We
defined the alignment property to be Forward because (as we'll see in the Lanes section below) we
defined the lanes to have the same orientation as the lane group.

A Note on Alignment

The orientation of a lane or lane group is defined by the geometry of the object. Geometry is defined as
an array of (x, y, z) coordinates. As we will see in the Lane Lane Groups section, we can define the lane
group geometry to run, e.g., west to east (left to right along the x-axis) or we can define it to run east to
west (right to left along the x-axis). If we elect to align the lane group west to east, we could define the
geometry as [-50, 0; 50, 0]. If we elect to align the lane group east to west, we could define the geometry
as [50, 0; -50, 0]. For the right lane within the lane group to be "Forward" aligned we would make sure
the x-coordinates match those of the lane group: [-50,-1.8; 50, -1.8] for west-to-east lane group orientation,
or [50, 1.8; -50, 1.8] for east to west. (Note: The concept of right (and left) is defined with respect to the
orientation of the lane group.) If the orientation cannot be defined as "Forward", it must be defined as
"Backward". See Figure 5 for an example of forward and backward alignment.

Right lane based on

Figure 5: Examples of lane orientations with respect to the lane group. The red arrow shows the lane group orientation
if we defined it west to east. The green arrow shows the orientation of the right lane if we defined it running west to
east — it would receive the “Forward” designation. The blue arrow shows the orientation of the right lane if we define it
as running east to west — it would receive the “Backward” designation with respect to the lane group.

-} MathWorks 7

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

Pitfall
Not providing the proper alignment will lead to strange renderings of the roadway.
Recommendation

If the final result does not look right, start by checking the alignment between lanes and lane groups,
and between lanes and lane markings.

Lane Groups

High-definition maps often model roads as a collection of lane groups with connections between them.
Lane groups are often defined as a single object, using the concept of geometry to define the location of
the center of the lane group. The type of road being modelled will often determine whether lane groups
consist of lanes with travel allowed in both directions (Lane Groups 1, 2 and 3 in Figure 6), or only in a
single direction (Lane Group 4 in Figure 6). Single direction lane groups are used most frequently for
roads with physical dividers between lanes of a given direction, such as highways and interstates. Roads
without a physical divider will often have a single lane group for all lanes with travel allowed in both
directions. The Lane Group object in RRHD references the lanes that create the group.

R D L \
Figure 6: Lane groups for single-direction travel (Lane Groups 1, 2, and 3), and lane groups for bi-directional travel (Lane
Group 4).

Create a Simple Lane Group

The snippet of MATLAB code below shows how to define a RRHD lane group object. In this example, we
will create a short segment of road that runs “West to East” or left to right along the x-axis. Lane Group
geometry may be defined as a 2D element vector (x, y) or as a 3D element vector (x, y,). If only the x and
y coordinates are provided, z is assumed to be zero. All inputs to the Lane Group method are provided as
name, value pairs.

LaneGroupW = roadrunner.hdmap.LaneGroup (Geometry=[-40, 0; -7.5, 0],
ID="LnGrW")

Command Window

>> LaneGroupW = roadrunner.hdmap.LaneGroup(Geometry=[-40, @; -7.5, @], ID="LnGrW")

LaneGroupW =
LaneGroup with properties:

ID: "LnGrW"
Geometry: [2x2 double]
Lanes: [@x1 roadrunner.hdmap.AlignedReference]
Figure 7: Example of RRHD LaneGroup object.

} MathWorks 8

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://www.mathworks.com/help/driving/ref/roadrunner.hdmap.lanegroup.html

Lane Groups have one more property besides Geometry and ID. They have the Lane property, which is
an array of aligned references to the lanes within the lane group, described in section Aligned
References.

For our example lane group, we will define two lanes, an east bound lane and a west bound lane. (We will
create these lanes in Lanes.) Assuming we have already created these lanes and defined their References
(EastBoundLaneRefW and WestBoundLaneRefW), the following code shows how to add the aligned
references to those lanes to the Lane Group. HD maps will almost always align the lanes and the lane
groups in the same direction, though this is not always the case. In this example, we also define the lanes
in the same direction as the lane group.

LaneGroupW.Lanes (end+1) =

roadrunner.hdmap.AlignedReference (Reference=EastBoundLaneRefW,
Alignment="Forward")

LaneGroupW. Lanes (end+1) =

roadrunner.hdmap.AlignedReference (Reference=WestBoundLaneRefW,
Alignment="Forward")

Command Window

>> LaneGroupW.Lanes(end+1) = roadrunner.hdmap.AlignedReference(Reference=EastBoundLaneRefW, ...
Alignment="Forward");

LaneGroupW.Lanes(end+1) = roadrunner.hdmap.AlignedReference(Reference=WestBoundLaneReflW, ...
Alignment="Forward")

LaneGrouph =

LaneGroup with properties:

ID: "LnGrW"
Geometry: [2x2 double]
Lanes: [2x1 roadrunner.hdmap.AlignedReference]
Figure 8: Note we have now added two AlignedReference objects to the Lanes property in the RRHD LaneGroup property.
(Compare to Figure 7.)

Once the lane group has been fully assembled, add it to the RRHD map.

rrMap.LaneGroups (end+1l) = LaneGroupWE

Note: MATLAB best practice is to pre-allocate memory for arrays. Because we may not know a priori how
many objects of interest we will have, especially if we are creating a real-world road from another HD map,
we will instead allow the array to grow as we build it up.

Lanes

In RRHD, lane objects represent many different parts of the roadway. Aside from representing the portion
of the road in which vehicles move, they also represent the shoulders, bike lanes, emergency stopping,
medians, curbs, sidewalks, street-side parking, road boarders, entrance and exit ramps, turning lanes, and
restricted lanes. For this reason, lanes are the most complex and information dense portion of the RRHD
map.

The Lanes object defines a lane through its geometry, boundaries, type and travel direction, references
its markings, connects to other lanes, allows users to define metadata, and contains parametric data

} MathWorks 9

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://www.mathworks.com/help/driving/ref/roadrunner.hdmap.lane.html

such as speed limits. In many ways, Lanes can be thought of as the most fundamental part of the RRHD
map. Without lanes, no part of the road network will render in the RoadRunner canvas when the map is
imported.

Defining connections between lanes helps with proper rendering of the roadway. RRHD considers two
types of lane connections. Lanes within a lane group are connected through their boundaries. This
connection is a side-to-side connection. RRHD uses the language of Left and Right, but the definitions of
Left and Right depend on the orientation of the lane and the lane group rather than the direction of travel.
Lanes in different lane groups are connected through the concept of predecessors and successors.
Whether a lane precedes or succeeds another lane depends on each lane’s alignment. Regardless of
travel direction or global alignment, a lane is a predecessor if it attaches at the starting point, as defined
by the geometry, of the lane of interest. A lane is a successor if it attaches at the end point.

Create a Simple Lane

Lane geometry and a unique ID are the bare minimum requirements to define a lane. The lane geometry
is given relative to the center of the lane. However, only providing the lane center will not define the lane’s
width. That is done by defining the Lane Boundaries. Travel direction, lane type, and speed limit, while not
required, have implications when using the RRHD map to create scenarios. This information might be
used by algorithms to determine whether a vehicle is illegally traveling in a lane, either by entering a lane
not designated for travel or by driving against the travel direction. Additionally, this information might be
used by the simulator when setting up the scenario to help define a vehicle's trajectory.

We will start by defining the east bound lane for the lane group defined in Create a Simple Lane Group.
The East bound lane’s travel direction aligns with the orientation of the road.

EastBoundLaneW = roadrunner.hdmap.Lane (Geometry=[-40,-1.8;-7.5,-1.8],
ID="LnGrW_EastBnd", LaneType="Driving", TravelDirection="Forward")

Command Window
>> EastBoundLaneW = roadrunner.hdmap.lLane(Geometry=[-40, -1.8; -7.5, -1.8],...
ID="LnGrW_EastBnd"”, LaneType="Driving", TravelDirection="Forward")

EastBoundLaneW =
Lane with properties:

ID: "LnGrW_EastBnd"
Geometry: [2x2 double]
TravelDirection: Forward
LeftLaneBoundary: [@x@ roadrunner. AlignedReference]
RightLaneBoundary: [@x@ roadrunner. AlignedReference]
Predecessors: [0x1 roadrunner. AlignedReference]
Successors: [@x1 roadrunner. AlignedReference]
LaneType: Driving
Metadata: [@x1 roadrunner. Metadatal]
ParametricAttributes: [@x1 roadrunner. ParametricAttribution]

Figure 9: Example of RRHD map Lane object. Note only the information passed into the method call has been assigned.

-} MathWorks)

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

At this point, the lane group has only one lane. We can add other lanes, and for this example, we will add
a west bound lane to make the lane group a two-way surface street. For this lane, we define the direction
of travel as backward because it goes against the orientation of the lane, which is still defined as west to
east.

WestBoundLaneW = roadrunner.hdmap.Lane (Geometry=[-40,1.8;-7.5,1.8],
ID="LnGrW WestBnd", LaneType="Driving", TravelDirection="Backward")

Command Window
>> WestBoundLaneW = roadrunner.hdmap.Lane(Geometry=[-46, 1.8; -7.5, 1.8],...
ID="LnGrW_WestBnd", LaneType="Driving", TravelDirection="Backward")

WestBoundLanelW =
Lane with properties:

ID: "LnGrW_WestBnd"
Geometry: [2x2 double]
TravelDirection: Backward
LeftLaneBoundary: [@x@ roadrunner.hdmap.AlignedReference]
RightlLaneBoundary: [@x@ roadrunner.hdmap.AlignedReference]
Predecessors: [@x1 roadrunner.hdmap.AlignedReference]
Successors: [@x1 roadrunner.hdmap.AlignedReference]
LaneType: Driving
Metadata: [@x1 roadrunner.hdmap.Metadata]
ParametricAttributes: [@x1 roadrunner.hdmap.ParametricAttribution]

Figure 10: The second lane. Note, there are no connections or boundaries assigned yet.

So far, the lanes have no widths nor any connections. We need to define the lane boundaries for both
lanes. In general, there will be N+1 lane boundaries needed for N lanes defined in a lane group. In this
case, there are 2 lanes, so we need 3 boundaries: a center boundary shared by both lanes, an east-bound
side boundary, and a west-bound side boundary. Assuming we have created the LaneBoundary objects
for these three boundaries (see Create a Simple Lane Boundary) we can use the convenience methods
for the Lanes object to define the left and right boundaries of each lane. Note: the center boundary is
shared between the two lanes.

Pitfall

Left and right are determined by the orientation of the lane geometry, NOT relative to the driving
direction.

For example, the center boundary is the LEFT boundary for the east-bound lane, which is how a driver in
this lane would define it. However, the center boundary is the RIGHT boundary for the west-bound lane,
even though a driver would see this as the left boundary for this lane. If we were to define the lane
orientations to be in the opposite direction, the definitions of left and right for each boundary would
switch.

-} MathWorks 11

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.lane.leftboundary.html
https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.lane.rightboundary.html

EastBoundLaneW.leftBoundary ("CenterLineW", Alignment="Forward")
WestBoundLaneW. rightBoundary ("CenterLineW", Alignment="Forward")
EastBoundLaneW.rightBoundary ("EastBoundSideLine", Alignment="Forward")
WestBoundLaneW. leftBoundary ("WestBoundSideLine", Alignment="Forward")

Command Window

>> EastBoundLaneW.leftBoundary("CenterLineW", Alignment="Forward");
WestBoundLaneW.rightBoundary("CenterLineW"”, Alignment="Forward");
EastBoundLaneW.rightBoundary("EastBoundSidelLine", Alignment="Forward");
WestBoundLaneW. leftBoundary(“"WestBoundSideLine"”, Alignment="Forward");
>> EastBoundLaneW

EastBoundLanel =
Lane with properties:

ID: "LnGrW_EastBnd"
Geometry: [2x2 double]
TravelDirection: Forward
LeftLaneBoundary: [1x1 roadrunner.hdmap.AlignedReference]
RightLaneBoundary: [1x1 roadrunner.hdmap.AlignedReference]
Predecessors: [@x1 roadrunner.hdmap.AlignedReference]
Successors: [@x1 roadrunner.hdmap.AlignedReference]
LaneType: Driving
Metadata: [@x1 roadrunner.hdmap.Metadata]
ParametricAttributes: [@x1 roadrunner.hdmap.ParametricAttribution]

>> WestBoundLaneW

WestBoundLaneW =

Lane with properties:

ID: "LnGrW_WestBnd"
Geometry: [2x2 double]
TravelDirection: Backward

LeftLaneBoundary:
RightlLaneBoundary:
Predecessors:
Successors:
LaneType:
Metadata:

[1x1 roadrunner.hdmap.
[1x1 roadrunner.hdmap.
[6x1 roadrunner.hdmap.
[6x1 roadrunner.hdmap.
Driving

[6x1 roadrunner.hdmap.

AlignedReference]
AlignedReference]
AlignedReference]
AlignedReference]

Metadata]

ParametricAttributes: [@x1 roadrunner.hdmap.ParametricAttribution]

Figure 11: Both lanes each have a left and right boundary.

If there were more lane groups with lanes, we would look into linking the lane groups together using
addSuccessor and addPredecessor convenience methods for the Lanes object. We will cover this in
detail when we go through a more complex example in Example: HD Map to RRHD.

-) MathWorks 12

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.lane.addsuccessor.html
https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.lane.addpredecessor.html

Should we want to include a speed limit, we can add a reference to the speed limit object in the Parametric
Attributes object of the Lanes object. We will discuss this object further in the Parametric Attributes
section.

Finally, you may add other information to the lane through the metadata object. We will discuss this object
further in the Error! Reference Source not Found section.

As the last step, add the finished lanes to the RRHD map.

EastBoundLaneWE
WestBoundLaneWE

rrMap.Lanes (end+1)
rrMap.Lanes (end+1)

Lane Boundaries

As discussed in the Lanes section, lane widths and lane connections within a lane group are defined
through references to Lane Boundaries objects. Lane Boundaries require a unique ID and geometry. If
lane markings exist at the boundaries, they can be added using the Parametric Attributes object, which
will be discussed further in the Parametric Attributes section.

Create a Simple Lane Boundary

For our current lane group, we have two lanes. They will share the center lane boundary, and each will
have its own side boundary. We will create lane boundary objects here. Assuming the lane marking
references have been created, we can add the lane marking references to the parametric attributes
property of the boundary.

cntrLaneBndry = roadrunner.hdmap.LaneBoundary (ID="CenterLineW",
Geometry=[-40, 0; -7.5, 0])

cntrLaneBndry.ParametricAttributes =

roadrunner .hdmap.ParametricAttribution (Span=[0, 1],
MarkingReference=sdyMarkRef)

ebsLaneBndry = roadrunner.hdmap.LaneBoundary (ID="EastBoundSideLine",
Geometry=[-40, -3.6; -7.5, -3.6])

ebsLaneBndry.ParametricAttributes =
roadrunner.hdmap.ParametricAttribution (Span=[0, 1],
MarkingReference=sswMarkRef)

wbsLaneBndry = roadrunner.hdmap.LaneBoundary (ID="WestBoundSidelLine",
Geometry=[-40, 3.6; -7.5, 3.6])

wbsLaneBndry.ParametricAttributes =
roadrunner.hdmap.ParametricAttribution (Span=[0, 1],
MarkingReference=sswMarkRef)

_1 MathWorks: 13

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://www.mathworks.com/help/driving/ref/roadrunner.hdmap.parametricattribution.html
https://www.mathworks.com/help/driving/ref/roadrunner.hdmap.parametricattribution.html
https://www.mathworks.com/help/driving/ref/roadrunner.hdmap.metadata.html
https://www.mathworks.com/help/driving/ref/roadrunner.hdmap.laneboundary.html

Command Window

>> wbsLaneBndry = roadrunner.hdmap.LaneBoundary(ID="WestBoundSidelLine", ...

Geometry=[-40, 3.6; -7.5, 3.6]);

wbsLaneBndry.ParametricAttributes = roadrunner.hdmap.ParametricAttribution(Span=[@, 1],...
MarkingReference=sswMarkRef)

wbslLaneBndry =
LaneBoundary with properties:
ID: "WestBoundSideline"

Geometry: [2x2 double]
ParametricAttributes: [1x1 roadrunner.hdmap.ParametricAttribution]

Figure 12: RRHD LaneBoundary object.

Now that the boundaries exist, the Lanes objects can refer to them for connecting lanes within the lane
group, defining the width of the lanes, and adding lane markings to the road.

Once the lane boundaries are finalized, we add them to the RRHD map.

rrMap.LaneBoundaries (end+1l) = cntrLaneBndry
rrMap.LaneBoundaries (end+1l) = ebsLaneBndry
rrMap.LaneBoundaries (end+1l) = WbsLaneBndry

Parametric Attributes

Parametric Attributes objects hold information related to lanes and lane boundaries that utilize the
concept of location along the lane or boundary, also called span. Lane Markings, Speed Limits and Traffic
Signals all fall under this category. Regardless of which attribute is defined, the basic definition of this
object is the same.

Most often, Parametric Attributes will span the entire length of a lane or lane boundary. For example, the
lane marking between lanes with opposite travel directions will likely have dashed yellow the entire length
of the lane group. There are times, however, when this might not hold. For example, on curvy or hilly roads,
the center lane markings might change from dashed to solid-dashed or dashed-solid several times along
the length of the lane boundary. This is when the concept of span comes into play.

The Span property is defined as a fraction of length along the lane or boundary. Therefore, The Span start
should never be less than zero, and the span end should never be greater than one.

Pitfall

While you can define multiple speed limits along a lane, RoadRunner will only apply the fastest limit
to the lane.

Recommendation

If you need to define multiple speed limits, break the lane (and corresponding lane group) into
separate objects for each segment and provide the speed limits for each object.

-} MathWorks 14

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.parametricattribution.html

Creating a Parametric Attribute

We already demonstrated how to define a lane marking along the lane boundaries in Create a Simple
Lane Boundary. For that example, the marking spans the entire length of the boundary. If instead we want
to define a double solid yellow center line for a first segment of the lane boundary, a solid-dashed yellow
center line for a second segment, and a dashed-solid yellow center line for the last segment, assuming
the references to those three lane markings exist, we would do the following.

cntrLaneBndry.ParametricAttributes (end+1l) =
roadrunner.hdmap.ParametricAttribution (Span=[0, 0.3],
MarkingReference=doubleSolidYellowMarkRef)

cntrLaneBndry.ParametricAttributes (end+1l) =
roadrunner.hdmap.ParametricAttribution (Span=[0.3, 0.72],
MarkingReference=SolidDashedYellowMarkRef)

cntrLaneBndry.ParametricAttributes (end+1l) =
roadrunner .hdmap.ParametricAttribution (Span=[0.72, 1],
MarkingReference=DashedSolidYellowMarkRef)

Figure 13: Note the lane marking along this stretch of road has been defined in three segments: Solid-Dashed, Double
Solid, Dashed-Solid.

Pitfall

RoadRunner does not enforce the span end for attribute n to match the start of attribute n+1. Any
gaps will have no markings present. E.g., if span 1 ended at 0.3 and span 2 started at 0.36, the
distance between 0.3 and 0.36 along the road would have no markings of any kind.

Recommendation

When creating a script, warn if the sum is not continuous.

To add speed limits or Signals along a roadway, we would follow the same process calling the
SpeedLimitReference or SignalReference name, value pair.

Metadata

The Metadata object allows the user to attach any information to a lane that is not already defined by
RRHD. This information is useful for many things, including exporting OpenDRIVE user data and providing
information relevant to ADAS or Automated Driving algorithms. For example, an algorithm identifies the
lanes using a numbering system counting left to right along the direction of travel. Each lane in RRHD
must have a unique identifier, so the lane number cannot be used as the ID. Therefore, we can give the
Lane Number as metadata. Now, during testing, the lane number can be obtained at any point along the
trajectory and compared to the value the algorithm selected. The metadata of an object can be found in
the side panel Metadata tab in the RoadRunner application when the object (lane, barrier, sign, etc.) is
selected.

) MathWorks 15

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.metadata.html

L Metadata
i

Add Metadata
LanelD (String)

Value | NorthBound

LaneNumber (String)

Value | 2

Figure 14: Metadata information display for a lane in RoadRunner app.

Create a Simple Metadata

LaneNuml = roadrunner.hdmap.Metadata(Name="LaneNumber", Value="1")

Command Window
>> LaneNuml = roadrunner.hdmap.Metadata(Name="LaneNumber"”, Value="1")

LaneNuml =

Metadata with properties:

Name: "LaneNumber™
Value: "1"
Figure 15: RRHD metadata object.

Pitfall

For Metadata both Value and Name must be specified as a string scalar or char vector. Value cannot
take on numerical values.

-} MathWorks 16

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

Junctions

The final portion of the roadway that can be defined using RRHD is a junction. In general, RoadRunner
does not need junctions to be independently defined. When two lane groups cross one another,
RoadRunner will form a junction with standard geometry based on the angles of the lane groups with
respect to one another.

If, for some reason, RoadRunner does not create the junction in a reasonable way, you may use the
Junctions object to define a junction. Junctions are the most complicated object in the RRHD map. As
shown in the next section, the onus is on the user to define every aspect of the junction.

Creating a Simple Junction

In this example, we will add a junction to the end of our lane group. It will represent the junction created
by a road running west to east intersecting a road running north to south. The Junction breaks these two
roads into four, a road on the west, a road on the east, a road to the north, and a road to the south of the
junction. Each road has two lanes, with opposing travel directions, and three lane markings. We assume
all of this has been set up per the examples above. Our final result will look something like this:

Figure 16: Road definition used to create the junction object.

Junction geometry is defined using a special RRHD MultiPolygon object. A MultiPolygon object has a
RRHD Polygons object as its property. The Polygons object has two properties. One is an ExteriorRing,
the other is InteriorRIngs. ExteriorRing defines the outer geometry of the junction as an Nx3 array, like any
other geometry definition described in the previous sections. InteriorRings defines inner geometry that
should be removed from the junction. Because there might be multiple interior rings, this property should
be defined as a cell array where each cell contains an Nx3 array defining the geometry of the interior ring.
For example, creating a roundabout would require the exterior ring to define the outermost edge of the
roundabout while the interior ring defines the inner edge of the roundabout.

For our simple junction, we will only define the exterior ring.

) MathWorks 17

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.junction.html

junctGeom = [-3.6, 7.5, 0; -5.0, 5.0, O; -7.5, 3.6, O;
-7.5, -3.6, 0; -5.0, -5.0, 0; -3.6, -7.5, O;
3.6, -7.5, 0; 5.0, -5.0, O; 7.5, -3.6, O;
7.5, 3.6, 0; 5.0, 5.0, O; 3.6, 7.5, O;
-3.6, 7.5, 0]

junctPolygn = roadrunner.hdmap.Polygon (ExteriorRing=junctGeom)
junctMultiPolygn = roadrunner.hdmap.MultiPolygon (polygons=junctPolygn)
centerJunct = roadrunner.hdmap.Junction (Geometry=junctMultiPolygn,
ID="TestJunction")

Command Window

>> junctGeom = . . ; -5.9, 5.0
=7 . ; -7.5, -3.6, @

-5, . ; -3.6, -7.5, 9;

3. . ; 5.0, -5.8, ©;

(7]

(%]

3

3

3

7. . ;7. 3.6,
5. . ;3. 7.5,
-3.

2

junctPolygn = roadrunner.hdmap.Polygon(ExteriorRing=junctGeom);
junctMultiPolygn = roadrunner.hdmap.MultiPolygon(polygons=junctPolygn);

centerdunct = roadrunner.hdmap.Junction(Geometry=junctMultiPolygn, ID="TestJunction")
centerJunct =
Junction with properties:

ID: "TestJunction”
Geometry: [1x1 roadrunner.hdmap.MultiPolygon]
Lanes: [@x1 roadrunner.hdmap.Reference]
Configurations: [@x1 roadrunner.hdmap.JunctionConfiguration]

Figure 17: RRHD junction object.

>> centerJunct.Geometry
ans =
MultiPolygon with properties:
Polygons: [1x1 roadrunner.hdmap.Polygon]
>> centerJunct.Geometry.Polygons
ans =

Polygon with properties:

ExteriorRing: [13x3 double]
InteriorRings: {}

Figure 18: RRHD MultiPolygon and Polygon objects used to define Junction geometry.

Next, the user must define all the connection lanes inside the junction. For our simple junction there are
twelve total connecting lanes we must create: N2N, S2S, W2W, E2E, N2E, N2W, , \ , ,

-) MathWorks 18

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

, . It is also important to define the curvature of the lanes. RoadRunner does not automatically
calculate the curvature given a junction geometry.

Figure 19: All Junction object lane connections. The user must define each of these lane connections individually.

Assuming we have defined all the lanes per the discussion in the Lane section, we can add the lane
references to the junction. For sake of brevity, we only add four lanes here, but the other eight will be
added in exactly the same way.

centerJunct.Lanes (end+1l) = LaneN2NBndRef
centerJunct.Lanes (end+1l) = LaneS2SBndRef
centerJunct.Lanes (end+1l) = LaneW2WBndRef
centerJunct.Lanes (end+1l) = LaneE2EBndRef

centerJunct =

Junction with properties:

ID: "TestJunction™
Geometry: [1x1 roadrunner.hdmap.MultiPolygon]
Lanes: [4x1 roadrunner.hdmap.Reference]
Configurations: [0x1 roadrunner.hdmap.JunctionConfiguration]

Figure 20: RRHD Junction object with inner lane connections defined.

} MathWorks 19

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

Junction Configurations

The final property of a junction is the Junction Configuration object. This object provides information
about which lanes through a junction are allowed which actions during a signal phase (e.qg. red light, green
light, flashing red, etc.). The signal phase is defined using a Phase Object. For each phase, the allowed
motion for each lane in the junction is defined in a Junction Lane State object.

For example, if there is a traffic light controlling each entrance into the junction we created in the section
above, we can define the phases for the light controlling the west and east bound traffic.

EWTrafficLight =
roadrunner.hdmap.JunctionConfiguration (ID="JunctionlEWLight",

Name="EastWestTrafficLight")

Command Window
>> EWTrafficLight = roadrunner.hdmap.JunctionConfiguration(ID="JunctionlEWLight", ...
Name="EastWestTrafficLight")

EWTrafficlLight =
JunctionConfiguration with properties:
ID: "JunctionlEWLight™

Name: "EastWestTrafficlLight”
Phases: [@x1 roadrunner.hdmap.Phase]

Figure 21: RRHD JunctionConfiguration object.

EWRedPhase = roadrunner.hdmap.Phase (ID="EWRedLight", Time=20)
EWYellowPhase = roadrunner.hdmap.Phase (ID="EWYellowLight", Time=5)

EWGreenPhase = roadrunner.hdmap.Phase (ID="EWGreenLight", Time=15)

Command Window

>> EWRedPhase = roadrunner.hdmap.Phase(ID="EWRedLight", Time=20);
EWYellowPhase = roadrunner.hdmap.Phase(ID="EWYellowlLight", Time=5);
EWGreenPhase = roadrunner.hdmap.Phase(ID="EWGreenlLight"”, Time=15)

EWGreenPhase

Phase with properties:

ID: "EWGreenLight”
Name: ""
Time: 15
JunctionLaneStates: [@x1 roadrunner.hdmap.JunctionLaneState]
Figure 22: RRHD Phase object.

-} MathWorks 20

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.junctionconfiguration.html
https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.phase.html
https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.phase.html

EWGreenPhase.JunctionLaneStates (end+1l) =
roadrunner.hdmap.JunctionLaneState (LaneID=LaneE2EBndRef,
State="GoAlways")

EWGreenPhase.JunctionLaneStates (end+1)=
roadrunner.hdmap.JunctionLaneState (LaneID=LaneE2EBndRef,
State="GoAlways") EWGreenPhase.JunctionLaneStates (end+1l)=
roadrunner.hdmap.JunctionLaneState (LaneID=LaneE2EBndRef, State="Yield")

EWGreenPhase.JunctionLaneStates (end+1)=
roadrunner.hdmap.JunctionLaneState (LaneID=LaneN2NBndRef, State="Stop")

EWGreenPhase =

Phase with properties:

ID: "EWGreenLight"
Name: ""
Time: 15
JunctionLaneStates: [4x1 roadrunner.hdmap.JunctionLaneState]
Figure 23: RRHD Phase object with JunctionLaneStates defined.

JunctionLaneState with properties:

LaneID: [1x1 roadrunner.hdmap.Reference]
State: "GoAlways™
Figure 24: RRHD JunctionLaneState object.

EWTrafficLight.Phases (end+1l) = EWRedPhase

EWTrafficLight.Phases (end+1) EWGreenPhase

EWTrafficLight.Phases (end+1) EWYellowPhase

EWTrafficlLight =

JunctionConfiguration with properties:

ID: "JunctionlEWLight"
Name: "EastWestTrafficLight™
Phases: [3x1 roadrunner.hdmap.Phase]
Figure 25: RRHD JunctionConfiguration object with defined Phases.

-) MathWorks 21

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

In this example, we have not considered all possible combinations of phase and lane states, but it is
mostly a matter of good bookkeeping to satisfy the combinatorics.

Once the junction is complete, add it to the RRHD map.

rrMap.Junctions = centerJunct

Lane Markings and Other Asset Types
RRHD has properties that refer to RoadRunner Assets.

Road markings are categorized as Lane Markings, Stencil Marking Types, and Curved Marking Types.
Lane Markings refer to an asset in RoadRunner that represents the marking between lanes on the road.
Curved marking types also refer to assets in RoadRunner that represent markings along the road. The
difference between these two marking types is that Lane Markings automatically follow the geometry of
the lane boundary that refers to the marking. Curved markings are independent of lane boundaries. A
typical use case for curved markings is parking spot marking. RRHD does not have a parking lot or parking
spot object, but parking lots can be created using lanes and curved markings. Stencil marking types refer
to other assets in RoadRunner that represent roadway markings such as zebra crossings, exclusion zone
diagonals and chevrons, turn arrows painted on lanes, markings at an interstate split, etc.

Static objects are categorized as Barrier Types, Sign Types, and Static Object Types. These objects refer
to assets in RoadRunner that represent the different kinds of barriers erected along the roadway, the
signs encountered along the road, and any other static objects one might expect to find on the side or in
the middle of the road. This includes Jersey Barriers, Guard rails, Noise Walls, Stop signs, Freeway signs
Speed Limit signs, buildings, trees, traffic cones, etc.

Creating a Simple Asset Type
Regardless of what kind of asset type you wish to define, all are defined in exactly the same way. Start
by defining a Relative Asset Path object, then create the asset type.

For a solid double yellow lane marking, we would do the following:

sdyPath =

roadrunner .hdmap.RelativeAssetPath (AssetPath="Assets/Markings/SolidDouble
Yellow.rrlms")

solidDbleYllw = roadrunner.hdmap.LaneMarking(ID="SolidDoubleYellow",
AssetPath=sdyPath)

Command Window

>> sdyPath = roadrunner.hdmap.RelativeAssetPath(AssetPath="Assets/Markings/SolidDoubleYellow.rrlms"
solidDbleY1llw = roadrunner.hdmap.LaneMarking(ID="SolidDoubleYellow", AssetPath=sdyPath)

solidDbleYllw =
LaneMarking with properties:
ID: "SolidDoubleYellow"

AssetPath: [1x1 roadrunner.hdmap.RelativeAssetPath]
Figure 26: RRHD LaneMarking object.

} MathWorks 22

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.lanemarking.html
https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.stencilmarkingtype.html
https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.curvemarkingtype.html
https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.barriertype.html
https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.signtype.html
https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.staticobjecttype.html
https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.relativeassetpath.html

Pitfall

For Lane Markings, Sign Types, Static Object Types, Stencil Marking Types, and Curved Marking
Types, the property is AssetPath. For Barriers, the property is ExtrusionPath, even though it expects
the same input data.

Once the lane marking, or other Asset Type has been created, add it, as appropriate, to the RRHD map.

rrMap.LaneMarkings (end+1l) = solidDbleYllw

Note About Relative Asset Paths

Relative Asset Paths are paths relative to your RoadRunner project directory leading to the asset you care
about. In the above example, we made a solid double yellow lane marking. No matter what kind of asset
you are looking for, you can find them in one of two ways. In the RoadRunner app find the “Library
Browser” pane (see Figure 27). There you will find the folder structure for all assets in the RoadRunner
project. Drill into the structure to find the asset you want. In the Attributes pane, the asset and the file
name will appear in the preview.

Figure 27: Find assets in the RoadRunner Library Browser pane.

The second way to find these assets is to open a window explorer and navigate to your RoadRunner
project directory (see Figure 28). Look through the directories for the asset you want. If the file name
ends with “.rrmeta”, you should remove that from the name when you enter it into the relative asset path.

_! MathWorks: 23

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

RoadRunnerProject > Assets Markings > Search Markings

= View ~

Name Status Date modified Type

M China 3/12/2025 10:41 AM File folder
M Germany 5 10:41 AM File folder

File folder

ws.rrmeta
‘ CrosshatchRegion.rrpms.rrmeta 2/ 2:27 PM RRMETA File
. alkrrpms.rrmeta 7 PM RRMETA File
[] DashedCrosswalkrrpms.rrmeta /6/2024 RRMETA File
‘ DashedDoubleWhite.rims.rrmeta
‘ DashedDoubleYellow.rrfims.rrmeta 27 RRMETA File
‘ DashedShortSingleWhite.rims.rrmeta 7 PM RRMETA File

‘ DashedShortSingleYellow.rrims.rrmeta 7 PM RRMETA File

Figure 28: Use Windows explorer to find asset files in the RoadRunner Project Assets directory.

Most directory names in the Assets directory are self-explanatory. There are a few exceptions
as follows:

e Barriers are found in “Assets\Extrusions”

e Stop and Yield signs with poles, intersection-spanning Traffic Lights, and common
Electricity poles can be found in “Assets\Assemblies” NOTE: these are not signs, they
are static objects.

e Stop and Yield signs without poles can be found in “Assets\Signs” Note: These are signs.

e “Assets\Props” contains many of the pieces required to build up trusses for overhead
freeway signs, poles for other signs, construction elements, etc.

Assets
Now that we have defined the asset types, we can place those assets throughout the RRHD map.

Lane Markings are treated slightly differently from the other assets. They do not have a corresponding
independent object like Barriers, Static Objects, Stencil Markings, and Curved Markings. Instead, they
become a Parametric Attribute for a Lane Boundary.

Using the double solid yellow line marking reference (sdyMarkRef) we created above; we can add it to the
center lane boundary object (cntrLaneBndry) we created in the Create a Simple Lane Boundary section
above.

cntrLaneBndry.ParametricAttributes =
roadrunner.hdmap.ParametricAttribution (Span=[0, 1],
MarkingReference=sdyMarkRef)

) MathWorks

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

24

ParametricAttribution with properties:

Span: [© 1]
MarkingReference: [1x1 roadrunner.hdmap.MarkingReference]
SpeedLimitReference: [0x@ roadrunner.hdmap.SpeedLimitReference]
SignalReference: [0x@ roadrunner.hdmap.SignalReference]

Figure 29: RRHD ParametricAttribution object.

Creating a Barrier, Sign, Static Object, Stencil Marking, or Curved Marking happens in nearly identical
ways. All objects require ID, Geometry, Reference, and Metadata. Barriers and Curved Markings have extra
properties regarding orientations. We will not cover those here.

Assume we want to add a barrier along the east bound lane of the road west of the junction. First, we
create the barrier type object for our guardrail.

barrierType = roadrunner.hdmap.BarrierType (ID="GUARDRAIL",
ExtrusionPath=roadrunner.hdmap.RelativeAssetPath (AssetPath=

"Assets\Extrusions\GuardRail.rrext"))

Command Window
>> barrierlype = roadrunner.hdmap.BarrierType(ID="GUARDRAIL",...

ExtrusionPath=roadrunner.hdmap.RelativeAssetPath(AssetPath = "Assets\Extrusions\GuardRail.rrext"))
barrierType =
BarrierType with properties:

ID: "GUARDRAIL"
ExtrusionPath: [1x1 roadrunner.hdmap.RelativeAssetPath]

Figure 30: RRHD BarrierType object.

Then, we can create a reference to this barrier and create the barrier about 0.2m beyond the edge of the
East bound outer lane boundary.

barRef = roadrunner.hdmap.Reference (ID = "GUARDRAIL")
barrier = roadrunner.hdmap.Barrier (ID="EB LGW Bar",

BarrierTypeReference=barRef, Geometry=EastBoundLaneW.Geometry-2)

Command Window
>> barrier = roadrunner.hdmap.Barrier(ID="EB_LGW_Bar", BarrierTypeReference = barRef,...

Geometry = EastBoundLaneW.Geometry-2)
barrier =

Barrier with properties:

ID: "EB_LGW Bar"
Geometry: [2x2 double]
BarrierTypeReference: [1x1 roadrunner.hdmap.Reference]
FlipLaterally: ©
Metadata: [@x1 roadrunner.hdmap.Metadata]

Figure 31: RRHD Barrier Object with BarrierTypeReference.

-} MathWorks 25

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.barrier.html
https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.sign.html
https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.staticobject.html
https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.stencilmarking.html
https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.curvemarking.html

Once the lane marking, or other Asset Type has been created, add it, as appropriate, to the RRHD map.

rrMap.LaneMarkings (end+1l) = solidDbleYllw

Note About Relative Asset Paths

Relative Asset Paths are paths relative to your RoadRunner project directory leading to the asset you care
about. In the above example, we made a solid double yellow lane marking. No matter what kind of asset
you are looking for, you can find them in one of two ways. In the RoadRunner app find the “Library
Browser” pane (see Figure 27). There you will find the folder structure for all assets in the RoadRunner
project. Drill into the structure to find the asset you want. In the Attributes pane, the asset and the file
name will appear in the preview.

Yeliow w

Figure 32: Find assets in the RoadRunner Library Browser pane.

The second way to find these assets is to open a window explorer and navigate to your RoadRunner
project directory (see Figure 28). Look through the directories for the asset you want. If the file name
ends with “.rrmeta”, you should remove that from the name when you enter it into the relative asset path.

RoadRunnerProject > Assets > Markings > Search Markings

= View ~
Name : ate modified
B China 25 10:41 AM File folder
I Germany 5 10:41 AM File folder

2025 10:41 AM File folder

rpms.Tmeta
i DashedCrosswalk.rrpms.rrmeta :27 RRMETA File
‘ shedDoubleWhite rrims.rrmeta 2 M RRMETA File
I DashedDoubleYellow.rims.rmeta / ” 7 RRMETA File
i DashedShortSingleWhite.rrims.rrmeta _ RRMETA File

B DashedShortSingleVellow.rrims.rrmeta 2:27 PM RRMETA File

Figure 33: Use Windows explorer to find asset files in the RoadRunner Project Assets directory.

) MathWorks 26

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

Most directory names in the Assets directory are self-explanatory. There are a few exceptions as follows:

e Barriers are found in “Assets\Extrusions”

e Stop and Yield signs with poles, intersection-spanning Traffic Lights, and common Electricity
poles can be found in “Assets\Assemblies” NOTE: these are not signs, they are static objects.

e Stop and Yield signs without poles can be found in “Assets\Signs” Note: These are signs.

o “Assets\Props” contains many of the pieces required to build up trusses for overhead freeway
signs, poles for other signs, construction elements, etc.

Assets
Now that we have defined the asset types, we can place those assets throughout the RRHD map.

Lane Markings are treated slightly differently from the other assets. They do not have a corresponding
independent object like Barriers, Static Objects, Stencil Markings, and Curved Markings. Instead, they
become a Parametric Attribute for a Lane Boundary.

Using the double solid yellow line marking reference (sdyMarkRef) we created above; we can add it to
the center lane boundary object (cntrLaneBndry) we created in the Create a Simple Lane Boundary
section above.

cntrLaneBndry.ParametricAttributes =

roadrunner.hdmap.ParametricAttribution (Span=[0, 1],
MarkingReference=sdyMarkRef)

ParametricAttribution with properties:

Span: [© 1]

MarkingReference: [1x1 roadrunner.hdmap.MarkingReference]
SpeedLimitReference: [@x8 roadrunner.hdmap.SpeedlLimitReference]
SignalReference: [@x8 roadrunner.hdmap.SignalReference]

Figure 34: RRHD ParametricAttribution object.

Creating a Barrier, Sign, Static Object, Stencil Marking, or Curved Marking happens in nearly identical
ways. All objects require ID, Geometry, Reference, and Metadata. Barriers and Curved Markings have extra
properties regarding orientations. We will not cover those here.

Assume we want to add a barrier along the east bound lane of the road west of the junction. First, we
create the barrier type object for our guardrail.

barrierType = roadrunner.hdmap.BarrierType (ID="GUARDRAIL",
ExtrusionPath=roadrunner.hdmap.RelativeAssetPath (AssetPath=

"Assets\Extrusions\GuardRail.rrext"))

) MathWorks 27

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.barrier.html
https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.sign.html
https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.staticobject.html
https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.stencilmarking.html
https://www.mathworks.com/help/roadrunner/ref/roadrunner.hdmap.curvemarking.html

Command Window
>> barrierlype = roadrunner.hdmap.Barrierlype(ID="GUARDRAIL",...

ExtrusionPath=roadrunner.hdmap.RelativeAssetPath(AssetPath = "Assets\Extrusions\GuardRail.rrext™))

barrierType =
BarrierType with properties:

ID: "GUARDRAIL"
ExtrusionPath: [1x1 roadrunner.hdmap.RelativeAssetPath]

Figure 35: RRHD BarrierType object.

Then, we can create a reference to this barrier and create the barrier about 0.2m beyond the edge of the
East bound outer lane boundary.

barRef = roadrunner.hdmap.Reference (ID = "GUARDRAIL")
barrier = roadrunner.hdmap.Barrier (ID="EB LGW_Bar",

BarrierTypeReference=barRef, Geometry=EastBoundLaneW.Geometry-2)

Command Window
>> barrier = roadrunner.hdmap.Barrier(ID="EB_LGW_Bar", BarrierTypeReference = barRef,...
Geometry = EastBoundLaneW.Geometry-2)

barrier =

Barrier with properties:

ID: "EB_LGW Bar"
Geometry: [2x2 double]
BarrierTypeReference: [1x1 roadrunner.hdmap.Reference]
FlipLaterally: @
Metadata: [©x1 roadrunner.hdmap.Metadata]
Figure 36: RRHD Barrier Object with BarrierTypeReference.

Pitfall

Object reference type names are similar, but not identical to the object being referenced, i.e., for
Barriers, the reference type property is BarrierTypeReference, for Signs it is SignTypeReference, for
Static objects, it is ObjectTypeReference, and for the Stencil and Curved Markings, it is
MarkingTypeReference.

Once the static object is finished, add it to the RRHD map appropriately.

rrMap.Barriers (end+1l) = barrier

Create the Scene in RoadRunner

Once you have built up the RRHD map, it is useful to save it as an asset in the RoadRunner project
directory. This will allow you to import the RRHD map easily into the RoadRunner application. You may

-} MathWorks 28

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

do that in two ways. Either programmatically, or by navigating to where you saved it in the Library Browser
of the Application and dragging and dropping into the canvas.

(The file locations will be unique to the user's computer.)

rrInstallloc = "C:\Program Files\RoadRunner R2025a\bin\winé4"
rrProjLoc = "C:\Users\userName\RRProject"
rrhdFile = rrProjLoc + "\Assets\SimpleJuncton.rrhd"

write (rrMap, rrhdFile)
rrApp = roadrunner (rrProjloc, "InstallationFolder", rrInstallDir)
rrApp.importScene (rrhdFile, "RoadRunner HD Map")

I 2] N S 5
s lloS

P Ll P ol DO S AR R
= T

Figure 37: RoadRunner's visualization of the RRHD map we created.

Pitfall

RoadRunner does not build the crossroads on the right with a junction. To change this default
behavior, you may specify build options for the importScene function.

OLGopts = enableOverlapGroupsOptions
OLGopts.IsEnabled = false
rrhdBuildOpts = roadrunnerHDMapBuildOptions

rrhdBuildOpts.EnableOverlapGroupsOptions = OLGopts
rrApp.importScene (rrhdFileNameAndLoc, "RoadRunner HD Map",
roadrunnerHDMapImportOptions (buildOptions=rrhdBuildOpts))

-} MathWorks 29

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://www.mathworks.com/help/releases/R2025a/driving/ref/roadrunner.importscene.html?searchPort=56946#mw_a6ae5715-2baa-4cb3-87db-adcac74e1dce

Compare our previous RRHD build:

Figure 38: Road network defined in our RRHD map, built by RoadRunner with default build options.

To the build with the enable overlap group options set to false:

Figure 39: Road network defined in our RRHD map, built by RoadRunner with group build option set to false.

Recommended Workflow to Build RRHD Map

While there is no required way to assemble an RRHD map, we have found the easiest way is to follow the
organization of the HD map from which the data is being drawn. Figure 35 shows the flowchart
enumerated in the list below with our recommended workflow to create a script to automatically build up
an RRHD map from HD map data.

-} MathWorks 30

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

Are there Are there more
more Lane Lane
Groups? Connectors?

Create RRHD
map object

Curved Makings?

Create referen
unique sign, b

Save RRHD map
Connect junetion

Are there
more Lanes?

Impartand Build
Add any curved RRHD Map

markings to lane

Add any speed
limits to lane

d
everything to RRHD map

Figure 40: Flowchart to help create a script to build an RRHD map from HD map data.

1. Create a roadrunner HD map object
2. If necessary, convert the geometry of your various objects from (Lat, Lon, Alt) to (x, y, z) - this
can be done as you proceed through the steps below
3. Add the unique assets found within your map to the RRHD map: Lane Markings, Stencil Marking
Types, Curved Marking Types, Barrier Types, Sign Types, Static Object Types, Speed Limits, Signal
Types. These references will be used throughout the next step to add these assets in multiple
places throughout the RRHD map. E.g., Double Solid Yellow lines will likely be used in many
places, but you only need one LaneMarking reference for this asset.
4. Loop through the lane groups in your HD map object
a. Loop through the lanes in your lane group
i. Add the connectivity to the lanes on the left and/or right side of the current lane
ii. Add lane boundaries to left and right side of lane
1. Include lane markings (parametric references)
2. Add lane boundaries to RRHD map
iii. Add Speed limits to the lane (parametric references)
iv. Add current lane to the RRHD Map
b. Add current lane to lane group
c. Add lane group to RRHD map
5. Loop through the Lane Group connection information from the HD Map provider
a. Loop through the lane groups associated with the connection
i. Loop through the lanes within the lane groups
1. Find and add the predecessors and successors for each lane within the
lane group
6. Loop through stencil markings and add to rrhd object
7. Loop through curve markings and add to rrhd object

.\ MathWorks 31

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

8. Loop through signs and add to rrhd object

9. Loop through barriers and add to rrhd object

10. Loop through static objects and add to rrhd object

11. Create junctions if necessary

12. Save RRHD map as an asset in your RoadRunner project directory

13. Create an instance of the RoadRunner application and connect it to a RoadRunner object in
MATLAB

14. Import and build the scene created by RRHD

Lane group only (nothing to visualize)

Two lanes (visualize lane centers)

Center Lane Boundary (visualize lane centers and boundary)

One Side Lane Boundary (visualize full lane)

Both Side Lane Boundaries (visualize both lanes)

Figure 41: Step-by-step buildup of an RRHD map.

& A
3

i

w2 @il @ XL

Built road in RRHD view

AR W |-

B
At @i NG E
i

L4 EL F

Built road in road creator view

Figure 42: A built road in RRHD and road creator views.

-} MathWorks 32

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

Example: HD Map to RRHD

In this section, we will take a real-world location, convert the desired portion of the roadway into the RRHD
map, and import it into RoadRunner. We are interested in recreating a stretch of Interstate 95 as it passes
near Boston, Massachusetts. We do not want all the side streets, or even all of the major thoroughfares
that intersect 195. We do, however, want to have the entrance and exit ramps to those side streets and
thoroughfares. Using a depth-first-search algorithm through the links and nodes coming from our HD
map provider of choice, we will select (more or less) the parts of the roadways highlighted in Figure 38.

7 2\

Figufe 43: Section of 195 to recreate using RRHD. Most, but not all, red segments will be imported.

It is beyond the scope of this paper to discuss the procedure for selecting the roadway from the HD map
provider, but assuming this information can be obtained, and the necessary data can be extracted from
the HD map, we can begin to construct the RRHD map.

To begin, as part of the HD map data processing, we extract the various assets (barriers, lane markings,
and signs) unique to this section of road. We also extract the various lane type definitions used by the
HD map provider.

B 21x1 string

BLUE
BLUE_RECTAN!

ACCELERATION
DECELERATION
XILIARY
W
NONE

REGULATED_ACC

TURN

CENTER_TURN

CENTRE_TURN Wi N_SHAPE_OTHER
T K Y CIRCLE

SHOULDER

VARIABLE_DRIV

DRIVABLE_PARKING Yi SHAPE_OTHER
OTHER

BUS

Figure 44: The unique barriers, lane markings, signs and lane type definitions provided by the HD map provider.

} MathWorks 33

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

This allows us to find the corresponding asset files and lane type definitions in RoadRunner. We need a
proper mapping between these definitions in RoadRunner and the HD map before we can automate the
process.

: P X s P|E nFiles X
B 3x1 string B 23x1 string B 13x1 string string
1 1 1
JerseyBarrier Unspecified SolidSingleYellow.rims US/Object Markers Sig n_OM1-2.svg_rrx
GuardRail02 Driving SolidDoubleYellow.rrims S US/Regulatory Si
StoneRockyWall Restricted DashedSingleYellow.rrims
Shoulder DashedDoubleYellow.rims 1 nation Signs/Sign_D5-1.svg_rmx
Biking DashedSolidYellow.rims rker Signs/Sign_M1-7.svg_mx
Parking DashedSolidYellow.rrims
Driving SolidSingleWhite.rrims
Driving SolidDoubleWhite.rrims
Driving Das| gleWhite. rims
Driving DashedDoubleWhite.rmims
Driving L olidWhite.rims
Driving DashedSolidWhite.rims
Driving EmptyMaterial.rmtl
Driving
Driving

CenterTum

Shoulder 5 llowPanel.svg_rmx

Driving 5 gns/US/Sign_BlankYellow. rrsign

Shoulder

Unspecified

Restricted

Figure 45: RoadRunner asset files and Lane type definitions to map to those provided by the HD map provider.

Next, we need the data from the HD map. We separated out the signs and barriers of interest from the
lane groups, lanes, and marking of interest. The map we used contains information about lane group
connections, which makes defining the lane processors and successor much easier than having to write
the connection algorithm ourselves. The image below shows the top-level organization of the data. The
data format is a relatively simplified structure from the HD map structure. The searchTable contains
information about the subset of links found through our depth-first-search algorithm. The signs and
barriers of interest are those signs and barriers that exist along the route we have defined in the
searchTable.

83x6 table

LaneGrplds LaneGrpRef LaneGrpGeom LaneAttribs LaneGrp2Con Con2LaneGrp
1 [61405394776,61647715537,100100093831;100227591226;114825001547]

0;61680214803;61695:

[61402792753;61607610202;100100

[31 071;614977'

finterest X
175%1 struct with 6 fields

Fields | BE Signid B ExteriorShape DominantColor M Center '@ Dimension & GeoOrientation

'DIAMOND* 'YELLOW' -106. g -3 | 50 [0,0,-0.4707]
945022132 'RECTANGLE' "WHITE" 6
‘TRIANGLE' 'RED"
'RECTANGLE' 'GREEN'
'REGTANGLE' 'GREEN' -120.2400, [2.1800,2.1800,1.2350] [0,0.-0.3828]

'RECTANGLE' 'SIGN COLOR OTHER' - 6078 [0.1900.0.1900 0 74001 10.0.-0 40231

1x263 struct with 4 fields
Fields | B Type BE Barrierld @ LocalCoords Y& barCoords
1 | JERSEY_BARRL
"JERSEY_BARRI.
JE '_BARRI
RSEY_BARRI 1

Figure 46: Sructre for the data from the HD Map

} MathWorks

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

Finally, we need to know the geo center for the map and the extents of the map area. We provide this
information in the geoCenter and geoBounds variables. The geoCenter is given as latitude, longitude, and
altitude. The geoBounds are the (x, y, z) extents of the map size in meters. This can be easily calculated
from the HD map data.

geoBounds X
B 2x3 double
1 2 3
-118.2082 -570.2601 -0.0266
118.1890 570.2626 -0.0266

X
2& 1x3 double
1 2
42.3429 -71.2613

Figure 47: Geo center and map extents

There are also several variables the user must provide. To create the RRHD map, the user should provide
the name of the map Author. To save the RRHD map for import, the user should provide a file name, and
it must have the “.rrhd’ extension. To open the RoadRunner application programmatically, the user needs
to provide the locations of the RoadRunner project and installation directory. The installation directory is
likely in the default location, but the user may elect to save it in a different place, or they must access it
through a network drive. The project directory does not have a default location. The user must specify
the location the first time they open RoadRunner.

User Defined quantities

mapAuthor k vy map author

rrhdFileName X file name for RRHD map

rrProjLoc = :\Us KMCg i oadRunnerProject\"; RoadRunner project directory
% RoadRunner install directory

Now that we have all the data we need, we can start to build up the map.

First, we must create an RRHD object.

fosoroso. 0 /0.

create RoadRunner HD map

rrMap = roadrunnerHDMap(Author=mapAuthor, GeoReference=geoCenter(1:2), GeographicBoundary=geoBounds);

Figure 49: Step 1 Create a RoadRunner HD map object.

} MathWorks 35

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://www.mathworks.com/help/driving/ref/roadrunner.html

rrMap =

roadrunnerHDMap with properties:

Author: "kmcgarri”
GeoReference: [42.3429 -71.2613]
GeographicBoundary: [2x3 double]

Lanes: [@x1 roadrunner.hdmap.Llane]
SpeedLimits: [@x1 roadrunner.hdmap.SpeedLimit]
LaneBoundaries: [@x1 roadrunner.hdmap.LaneBoundary]
LaneGroups: [@x1 roadrunner.hdmap.LaneGroup]
LaneMarkings: [@x1 roadrunner.hdmap.LaneMarking]
Junctions: [@x1 roadrunner.hdmap.Junction]
BarrierTypes: [@x1 roadrunner.hdmap.BarrierType]
Barriers: [@x1 roadrunner.hdmap.Barrier]
SignTypes: [@x1 roadrunner.hdmap.SignType]

Signs: [@x1 roadrunner.hdmap.Sign]
StaticObjectTypes: [Bx1 roadrunner.hdmap.StaticObjectType]
StaticObjects: [@x1 roadrunner.hdmap.StaticObject]
StencilMarkingTypes: [@x1 roadrunner.hdmap.StencilMarkingType]
StencilMarkings: [@x1 roadrunner.hdmap.StencilMarking]
CurveMarkingTypes: [©x1 roadrunner.hdmap.CurveMarkingType]
CurveMarkings: [@x1 roadrunner.hdmap.CurveMarking]
SignalTypes: [@x1 roadrunner.hdmap.SignalType]
Signals: [@x1 roadrunner.hdmap.Signal]

Figure 50: RRHD map. The user defined quantities have been added to the object.

Our rrMap object is empty except for the Author, GeoReference, and GeographicBoundary properties we
passed into the function call.

Next, we will set the Asset Types in the RRHD map. To do this, we created a helper function called
setRRAssetTypes. This function requires the RRHD map object, a string indicating which asset we are
setting, a vector containing the file names (Figure 45), and a vector containing the asset IDs (Figure 44).
We do this for each of the asset types we want to include in the RRHD map.

%6%6%6%6%6%9696 966696 %66.6.%6.76.%6 %6 %6769 % 6 %6 96 9696 9696 767676 7676 %656 %6 %6 96 96 6 %6 96 %6 96 966 767676 76 %6
% add the barrier, marking, and sign types to rrMap %
%6%6767696969696 9666969667676 %6 %6 %6 %696 %6 96 96 %6 %6 96 96 9696 96 76 76 76 %6 %6 %6 %6 %6 96 96 96 96 96 96 96 96 %6 76 7676 76 %

setRRAssetTypes(rrMap, "Barrier", rrBarrierFiles, barrierlIds);
setRRAssetTypes(rrMap, "LaneMarking"”, rrMarkingFiles, markinglIds);
setRRAssetTypes(rrMap, "Sign", rrSignFiles, signlds);

Figure 57: Step 3 add the unique assets found within your map to the rrhd map: Lane Markings, Stencil Marking
Types, Curved Marking Types, Barrier Types, Sign Types, Static Object Types, Speed Limits, Signal Types. These
references will be used throughout the next step to add these assets in multiple places throughout the RRHD map.
E.g., Double Solid Yellow lines will likely be used in many places, but you only need one LaneMarking reference for this
asset. setRRAssetTypes is a user-created function (source code shown in Figure 52) to help define the various asset
types used in this example.

The important part of the helper function defines a relative asset path, the asset type, and inserts the
asset type reference into the RRHD map.

-} MathWorks 36

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

96%6.%6.%6.%.%.%.%.%.%6.%6.%6.96. 9696966969696 96 96 966 96 9696 969676766 %6 7676 %6 %

% loop over assets used in this map %

966.76.76%6%6.%6.%.%6.%.%.%%696 %% 96969696 %6 %6 9696 %66 %6 6.6.76.6.6.76.76.76.76.%

for px = 1l:numel(assetlds)
96969696%%6.%6.7666 696696 %6.%6.76.76.76%6 %6 96 %696 %6 76767696 %6 %6 %66 %6 % 767676 %
% create RelativeAssetPath for assets %
96767676.76.76.6.6.76.76.%6.%6.%.%6.%6.%.%6.%6 969696 96 9696 96 %6 96 96 %6 96 96 766 766676766
relAssetPath = roadrunner.hdmap.RelativeAssetPath(AssetPath = assetFiles(px));
rrAssetType = roadrunner.hdmap.(mapInsert)(ID = assetIds(px));

96%%96969676.%6.%%969676.%.% %666 % %

% create assetType %

%6%6%%96966%.%%96%6%6.%.%% 6 %6%6.%

if strcmp(assetType, "Barrier™)
rrAssetType.ExtrusionPath = relAssetPath;

else
rrAssetType.AssetPath = relAssetPath;

end

96969696%6%6.76.7666 66969696 967676766 %6 %66 %6 %6 7676767696 %6 %6 96 %6 %6.%6.%6.76.%6 9696 96 %6 %6 6. %6 767696 96 %6 %6 %6 96

% add asset to asset type array in RoadRunner HD Map %

96969696%%.%.%6.%66 %66 %6 %6 % %6 %676 7676 %696 %6 %6 %6 %6 %6 767696 %6 %6 %6 %% %6 %7676 7696 9616 %6 %6 % %6 %676 %6 %6 %6 %6 %6

rrMap. (mapInsert + "s")(end+1l) = rrAssetType;
end % end loop over lane markings
Figure 52: Source code for the function shown in Figure 48 to define various asset types in RRHD. Note: regardless of
the asset type, the basic functions calls are the same.

The RRHD map object now contains 13 unique lane markings, 3 unique barrier types, and 21 unique sign
types.

rrMap =
roadrunnerHDMap with properties:

Author: “"kmcgarri®
GeoReference: [42.3429 -71.2613]
GeographicBoundary: [2x3 double]

Lanes: [@x1 roadrunner.hdmap.lLane]
SpeedlLimits: [@x1 roadrunner.hdmap.SpeedlLimit]
LaneBoundaries: [@x1 roadrunner.hdmap.LaneBoundary]
LaneGroups: [@x1 roadrunner.hdmap.LaneGroup]
LaneMarkings: [13x1 roadrunner.hdmap.LaneMarking]
Junctions: [Bx1 roadrunner.hdmap.Junction]
BarrierTypes: [3x1 roadrunner.hdmap.BarrierType]
Barriers: [Bx1 roadrunner.hdmap.Barrier]
SignTypes: [21x1 roadrunner.hdmap.SignType]

Signs: [@x1 roadrunner.hdmap.Sign]
StaticObjectTypes: [@x1 roadrunner.hdmap.StaticObjectType]
StaticObjects: [©x1 roadrunner.hdmap.StaticObject]
StencilMarkingTypes: [©x1 roadrunner.hdmap.StencilMarkingType]
StencilMarkings: [@x1 roadrunner.hdmap.StencilMarking]
CurveMarkingTypes: [@©x1 roadrunner.hdmap.CurveMarkingType]
CurveMarkings: [©x1 roadrunner.hdmap.CurveMarking]
SignalTypes: [©x1 roadrunner.hdmap.SignalType]
Signals: [@x1 roadrunner.hdmap.Signal]

Figure 57: Note, our RRHD object now contains all the asset type definitions.

-} MathWorks

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

Because our HD Map provider uses links and nodes as the basis for defining a roadway, we have
organized our data by links, which may contain several lane groups. Lane groups may span more than
one link, and so we want to make sure we do not double-count any given lane group.

% Our data is arranged by links rather th lane groups, therefore it is
; possible to encounter a given lane group more than once. We need to keep %
% track of whetherwe have already added the lane group so we don't double add %

6% %%, %o 26.76.96.6.6.06.76 066 2696%6. %%
laneGroupAdded unique(vertcat(searchTable.LaneGrpIds{:}), "stable");
laneGroupAdded [1laneGroupAdded, false(size(laneGroupAdded))];

Figure 52: Variable to keep track of whether we have added the lane group to the RRHD map.

We loop through the rows of our searchTable and extract the lane group and associated lanes attributes

information.

%69696%6696.%.66.% %66 %% %66 %6 %676 %6 % %6766 %7696 %6 %6 %66 %6 %6 %696 % %696 %6 %6 %6 %66 6 %696 %6 %676 %6 %7676 6 %6 %676 % %6 %696 % %6 %696 %6 %676 %6 %7696 %6 %6 %
% loop over links to find the lane groups and lanes to set up the RRHD map %
% (each row in the searchTable contains link information) %
6969696696766 % %666 %7676 % %76 %6 % %696 %6 %7676 6 %6 %66 % %6 766 % %6766 %6 %6 76 %6 % %676 %6 % %66 %676 %6 %6 %696 % %6 %66 % %6 %6 %6 6. %%6 %6 % %6 %6 %6 %6 %
for bx = l:numel(searchTable.LaneGrpRef)

%69696%69696%6.696 %6966 %6 %766 96 % %66 %6 %96 %6 % %66 %6 % %66 %6 % %66

% grab the lane group information %

9696966696966 %6 %676 %6 9% %66 %6 % %696 %6 %96 %6 %6 %696 %6 % %66 %6 %76 %6

currLaneGeom = searchTable.LaneGrpGeom{bx};

currLaneAtrb = searchTable.LaneAttribs{bx};

Figure 53: Loop over Links from HD Map. In this example, the map uses links as its base road object. Each link will
contain multiple Lane Groups.

currLaneGeom =
5x4 table

LaneGroupRef ReferenceGeometry LaneGeometries LaneBoundaryGeometries

61405394776 struct {6x1 struct} {7x1 struct}
61647715537 struct {4x1 struct} {5x1 struct}
100100093831 struct {6x1 struct} {7x1 struct}
1008227591226 struct {6x1 struct} {7x1 struct}
114825001547 struct {5x1 struct} {6x1 struct}

Figure 54: In the current link, there are five Lane Groups. The First Lane group has 6 lanes associated with it, and 7 lane
boundaries. The other lane groups have N lanes and N+1 Lane Boundaries as defined by the HD Map provider.

currLaneAtrb =
5x4 table

LaneGroupRef LaneAttribution LaneBoundaryAttribution ParametricAttribution

614085394776 {6x1 struct} {5x1 struct} {1x1 struct}
61647715537 {4x1 struct} {4x1 struct} {1x1 struct}
100100093831 {6x1 struct} {5x1 struct} {1x1 struct}
100227591226 {6x1 struct} {5x1 struct} {1x1 struct}
114825001547 {5x1 struct} {6x1 struct} {1x1 struct}

Figure 55: The Attribution data is organized per the HD Map provider, and there may not always be an attribute explicitly
associated with each element in the road. You will need to know the defaults from your HD Map provider to properly
assign these attributes.

-} MathWorks

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

We loop through the lane groups associated with the link and extract the information from the map
data. At this point, it is important to understand how your HD Map provider structures the data, as this
will determine how you extract the relevant information and apply it to the correct lanes, boundaries,
lane groups, etc.

%6%6%666666666 6966 %66 96 %6 %6 %6 %6 %6 %6 %6 %6 %6 %6 76 767676 %6 %666 %6 96 6

% loop over lane groups in this link %

%66%6676669666 66696969696 %6 %696 %6 %6 %6 %6 %6 %7676 %676 7696 96 9696 96 96 %6

for lgx = 1l:size(currLaneGeom, 1)
9696262666696 %6696 96 %6 % %6 %6 %6 % % % %6 %6 %6 %6 %6 %6 %6 %696 %6 %6 96 %6 %6 %6 %6

% setup the rrhd lane group object %
969696969666.%6.%.%.%% 9696 %676 %6 % %6 % %6 96 %6 76 %6 %6 %6 % %6 96 96 6 96 76 %6 %6

currLGGeom = currLaneGeom.ReferenceGeometry(lgx).LocalCoords;
laneGroupID = currLaneGeom.LaneGroupRef(1lgx);

Figure 56: Step 4 Loop through the lane groups in your HD map object.

If we have not already added a given lane group to the RRHD map, we can create a Lane Group object
from the information we have extracted.

%69696% 669 %6696 %696 %6 % %696 %6 % %696 %6 % %696 %6 %
% look for the lane group %
6969696696966 %7696 %6 %6 %6 % %76 %6 %7696 %6 %
lgax = (laneGroupAdded(:, 1) == laneGroupID);

9696969669676 %6 %666 1676766 % %66 %6 %7696 %6 % %676 %6 % %66 6. %6 %606 16 % 7696 16 6.6 96 16 %696 %6 %666 16 %36 6
% if we have not already added this lane group, add it %
%69696%.69696.%.%696 96 %696 96 %6 %6966 % %696 %6 % %696 96 % %696 %6 %6 %696 %6 %6 %66 %6 % %66 %6 %6966 % %6 %6 %6 % % %6 %6 % %%
if (laneGroupAdded(lgax, 2) == uint64(0))
currRRHDLaneGrp = roadrunner.hdmap.LaneGroup(ID = laneGroupID, Geometry = currlLGGeom);

Figure 57: Determine whether the lane group has been added to the RRHD map.

Now, we loop over the lanes within the current lane group and set up Lane objects for the RRHD map.

travelDir currLaneAtrb.LaneAttribution{lgx}(1x).TravelDir;

laneType = currLaneAtrb.LaneAttribution{lgx}(1x).LaneType;

laneGeom currLaneGeom. LaneGeometries{1lgx}(1x).LanePathGeometry.LocalCoords;

lanelD num2str(laneGroupID) + "_" + num2str(lx);

currRRHDLane reoadrunner.hdmap.Lane(ID = laneID, Geometry = laneGeom,...
TravelDirection = travelDir, LaneType = laneType);

Figure 58: Step 4a Loop through the lanes in your lane group.

For a given lane, we will have information on both the left and right lane boundaries. For the first lane in
our group, we will make both a left and right boundary object. After that, as we go through our loop over
the lanes, we only need to add the right boundary because the right boundary from the previous lane
becomes the left boundary of our current lane.

-} MathWorks 39

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

%, o7, P, o

we only need to find the left lane boundary for the first lane after that, once we

have the right lane boundary it becomes the left lane boundary for the next lane

currLaneInfo.Geometries(1x).LeftLaneBoundaryNumber;
currRRHDLeftBndry = getRRHDLaneBndryObj(currBndryInfo, currRRHDLane.ID, 1lbx);
rrMap.LaneBoundaries(end+1) = currRRHDLeftBndry;

currRRHDLeftBndry
% end if first, else other lanes

now get right boundary %
rlbx currLaneInfo.Geometries(1x).RightLaneBoundaryNumber;
currRRHDRightBndry = getRRHDLaneBndryObj(currBndryInfo, currRRHDLane.ID, rlbx);
rrMap.LaneBoundaries(end+1) = currRRHDRightBndry;

Figure 59: Step 4a Add the connectivity to the lanes on the left and/or right side of the current lane, including lane
boundaries, and speed limits (we omit these in this example). Finally, adding the lane to the RRHD map.

To get the lane boundary objects for the RRHD map, we have created a helper function,
getRRHDLaneBndryObj, which requires lane boundary and lane information. This function will find the
various lane markings associated with the given lane and the spans along the lane over which these
markings apply. Then, it creates a Lane Boundary object to return to the calling function. The salient
part of this function is as follows.

96969696766 96%.766 %6 %766 %6 %696 %6 %6 %6966 %6 %7696 %6 %676 %6 %6 %696 %6 %6 % %6 %6 %6 %
% create the RRHD lane boundary object %
%69696%.%.696%.%6696 %6 %66 %6 % %6766 % %66 %6 % %696 %6 % %66 %% %6 %6 %6 % %6 %6 %6 %
currRRHDLaneBndry = roadrunner.hdmap.LaneBoundary(ID = bndryID, Geometry = bndryGeom);

9696969666966 %6996 %6 %6766 %6 %676 96 %6 367696 %6 %6966 %6 %6 %6 %6 %6 %6 %6 96 967696 %6 %6 %6 %6 %6 %6 %696 %6 %6 3696 %6 %6 %696 %6 % %696 %6 % %696 %6 %6 %6
% setting up the rrhd lane boundary parametric attributions object %
% loop over the total number of markings %
6969696666976 %6 %766 %6 %7676 %6 %6 %6 %6 %6 %6 %696 %6 %6 %66 %6 %6 %6 %6 %6 %6 766 967676 %6 %636 7696 9676 %696 % %696 %6 % %676 %6 % %676 %6 % %96 %6 %6 %
prmAttr = [];
for mx = 1:numel(1mID)
rrRef = roadrunner.hdmap.Reference(ID = 1ImID(mx));
rrMarkRef = roadrunner.hdmap.MarkingReference(MarkingID = rrRef);
prmAttr = [prmAttr; roadrunner.hdmap.ParametricAttribution(Span = markingSpan(mx, :),...
MarkingReference = rrMarkRef)];
end % end loop over number of marks for this lane (mx)

currRRHDLaneBndry.ParametricAttributes = prmAttr;
Figure 60: Step 4a Include lane markings (parametric references) to the RRHD map

Once we have the right and left boundaries, we can add them to the current lane. We can then add the
current lane to the RRHD map.

%6962696.96.% %% %696 96 % % %766 6% %6 %6766 % % %6 %6 %696 %6 %6 % %6 %6766 96 96 %6 %6766 6 26 %6 % % 36 %

% set the boundaries in the current lane object %

6069696 96 %6 %6.76.96 96 9696 % %6 96 7696 96 56 %6 76 76 9696 56 %6 %6 769696 6 96 %6 %6 76696 96 %6 267696 %69 %6 % % %6 %
currRRHDLane.leftBoundary(currRRHDLeftBndry.ID, "“Alignment"”, “Forward");
currRRHDLane. rightBoundary(currRRHDRightBndry.ID, "Alignment™”, "Forward");
rrMap.Lanes(end+1) = currRRHDLane;

Figure 61: Step 4a Add lane boundaries to left and ride side of lane.

-} MathWorks

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

Finally, we create an aligned reference for this lane and add it to the current lane group, thus completing
the loop over the lanes.

get the reference to thi

9/9/0/0/0/ /070 0/0/0/0/0/0/9/0/ 0/ 0/ 0/ 0/ /T,

laneRef roadrunner.hdmap.Reference(ID = currRRHDLane.ID);

allLaneRef = roadrunner.hdmap.AlignedReference(Reference = laneRef, Alignment = "Forward");
currRRHDLaneGrp.Lanes(end+1l) = alllLaneRef;
end % end loop over lanes in current lane group (1x)

Figure 62: Step 4b Add current lane to lane group.

Now that the lane group has references to all the lanes, which have references to all the lane
boundaries, and thus we have lateral connectivity between the lanes within the lane group, we can add
the lane group to the RRHD map.

67676767676767676766666 6666 9696 %6 96 96 96 96 96 96 96 96 %6 %6 %6 96 %6 %6 %6 %6 %6 %6 %6 %6 %6 %6 %6 76 76 76767676 76 %6
% add all lane references to the lane group object %
9696962626666696 666666 966 96 96 %6 96 969696 96 96 96 %6 %6 %6 %6 96 %6 %6 %6 %6 %6 %6 %6 %6 %6 %6 %6 %6 %6 %6 %676 76 7676
rrMap.LaneGroups(end+1) = currRRHDLaneGrp;

Figure 63: Step 4c Add lane group to RRHD map.

The RRHD map object now has 6 lanes, 7 lane boundaries, and 1 lane group. These arrays will continue
to grow as we loop over the lane groups and links to build up the map.

rrMap =
roadrunnerHDMap with properties:

Author: "kmcgarri”
GeoReference: [42.3429 -71.2613]
GeographicBoundary: [2x3 double]

Lanes: [6x1 roadrunner.hdmap.Lane]
SpeedlLimits: [@x1 roadrunner.hdmap.SpeedLimit]
LaneBoundaries: [7x1 roadrunner.hdmap.LaneBoundary]
LaneGroups: [1x1 roadrunner.hdmap.LaneGroup]
LaneMarkings: [13x1 roadrunner.hdmap.LlLaneMarking]
Junctions: [@x1 roadrunner.hdmap.Junction]
BarrierTypes: [3x1 roadrunner.hdmap.BarrierType]
Barriers: [@x1 roadrunner.hdmap.Barrier]
SignTypes: [21x1 roadrunner.hdmap.SignType]

Signs: [@x1 roadrunner.hdmap.Sign]
StaticObjectTypes: [@x1 roadrunner.hdmap.StaticObjectType]
StaticObjects: [0x1 roadrunner.hdmap.StaticObject]
StencilMarkingTypes: [@x1 roadrunner.hdmap.StencilMarkingType]
StencilMarkings: [@x1 roadrunner.hdmap.StencilMarking]
CurveMarkingTypes: [©x1 roadrunner.hdmap.CurveMarkingType]
CurveMarkings: [0x1 roadrunner.hdmap.CurveMarking]
SignalTypes: [@x1 roadrunner.hdmap.SignalType]
Signals: [@x1 roadrunner.hdmap.Signal]

Figure 64: RRHD map with lane groups, lanes, and lane boundaries.

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

After we have made this first pass through the data, we will need to loop through the data again to
connect the successors and predecessors for each lane. Without proper connectivity, the RRHD map
will not render correctly when imported into RoadRunner. Our HD Map provider gives Lane Group
connection information. The next section of code loops through this connection information and finds
the lanes to connect.

There are four ways lanes can connect to one another:

Both lanes start at the connector

Current lane starts and next lane ends at the connector

Current lane ends at the connector, and next lane starts at the connector
Both lanes end at the connector

H o=

Most of the code in this section of the file is to determine which of these four ways the lanes connect.
Once we know this, we can define the connections for the RRHD map. Note, both lanes may be
Predecessors of one another if they both start at the connection, whereas they would be Successors if
they both end at the connection. Knowing the direction of the lane is important at this point.

if laneConnInfo.IsStart(currConnLns(ccx))
if laneConnInfo.IsStart(currConnLns(ncx))
9696696966966 96 9696966 9.6 %6 %66 %96 %6366 %696 %6.%6 %6 %6 %6 % %6 %6
% both lanes start at connector %
6969766969966 %966 %6 % %696 %6 %9696 %6 % %696 %6 %966 %6 % %66
addPredecessor(rrMap.Lanes(cldx), nextLaneID, “"Alignment", "Backward");
addPredecessor(rrMap.Lanes(nldx), currLaneID, “Alignment"”, "Backward");

9696969669676 %% %696 %6 %6 %696 %6 % %696 %6 %6 %696 %6 %6.%6 %6 % %696 %6 % %696 %6 %6 %696 %6 %6 %696 %6 %9696 %6 %7696 % %%
% current lane starts and next lane ends at connector %
96969676696 %6.%6.6 6% %66 %696 %66 %696 %66 %6.%6.96 %6 %6 %696 %6 %6 %696 96 % %696 %6 % %696 %6 % %66 %6 %6 %6 %6 %6 %966 % %6 %
addPredecessor(rrMap.Lanes(cldx), nextLaneID, "Alignment"”, "Forward"
addSuccessor(rrMap.Lanes(nldx), currLaneID, "Alignment", "Forward");

end

else

if laneConnInfo.IsStart(currConnLns(ncx))
6969696696996 6 %766 %6 %6 7696 %6 %9696 %6 %696 %6 %6 %696 %6 %6 %696 %6 % 7696 %6 % %696 %6 % %696 %6 % 9696 %6 %96 %6 %6 %6 %6
% current lane ends and next lane starts at connector %
6969676696976 96 %6 %696 %6 96 766 569766 %6 %6966 % %696 96 % %696 %6 % 7696 %6 % %696 %6 % 966 %6 %676 %6 % %966 % %6 %
addSuccessor(rrMap.Lanes(cldx), nextLaneID, "Alignment", "Forward");
addPredecessor(rrMap.Lanes(nldx), currLaneID, "Alignment", "Forward"

9696969696996 6 %766 %6 %7696 %6 %7696 %6 % %66 %6 %7696 %%

% both lanes end at connector %

9696996969766 %766 %6 % %696 %6 % %696 %6 % %696 %6 %% %6 %6 %

addSuccessor(rrMap.Lanes(cldx), nextLaneID, "Alignment", "Backward");

addSuccessor(rrMap.Lanes(nldx), currLaneID, "Alignment", “"Backward");
end % end if next lane starts, else ends, at connector

end % end if current lane starts, else ends, at connector
Figure 65: Step 5 Find and add the predecessors and successors for each lane within the lane group. Note the
conditions under which a lane is considered a predecessor compared to a successor of another lane. The conditions
have to do with whether a lane starts or ends at a connection.

-} MathWorks 42

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

K>> rrMap.Lanes(1)

ans =
Lane with properties:

ID: "61405394776_1"
Geometry: [6x3 double]
TravelDirection: Unspecified
LeftLaneBoundary: [1x1 roadrunner.hdmap.AlignedReference]
RightLaneBoundary: [1x1 roadrunner.hdmap.AlignedReference]
Predecessors: [1x1 roadrunner.hdmap.AlignedReference]
Successors: [1x1 roadrunner.hdmap.AlignedReference]
LaneType: Shoulder
Metadata: [@x1 roadrunner.hdmap.Metadata]
ParametricAttributes: [@x1 roadrunner.hdmap.ParametricAttribution]
Figure 66: The first lane in the RRHD map now has all its connections.

Once we have cared for the lane groups, lanes, and lane boundaries, we can move on to the other objects
such as signs and barriers.

Our script loops over the signs first. Each element in the signsOfinterest structure array contains all the
necessary information for setting the signs along the roadway. Note, we did not add poles or trusses to
these signs, but they could be added programmatically with a little extra coding logic and adding
StaticObjectTypes to the RRHD map.

To place the sign in space, we must create a GeoOrientedBoundingBox object that contains information
about the location of the center, dimensions, and orientation of the sign.

%6%66767676767676767676676676676.76.76.76.76.76.76.76.76.6.76.76.76.76.76.76.76.76.76.6

% get the sign geometry information %
666666676.676.7676.7676.7676.6.76.76.76.76.76.76.76.76.76.76.76.76.76.76.76.76.76.76 7676

currGeom = roadrunner.hdmap.GeoOrientedBoundingBox;
currGeom.Center currSign.Center;

currGeom.Dimension = currSign.Dimension;
currGeom.GeoOrientation currSign.GeoOrientation;

Figure 67: Step 8 Loop through signs and add to RRHD object. Defining the sign geometry information.

Then, we can create the reference for the sign and finally add the sign to the RRHD map.

6969676669696 7676969696 76 76966 %6 76 766 %676 %6 7696 % %6 %696 96 % %6 766 96 7% %696 96 %6 % %6 %6 96 %%
% set the reference and the signs in rrhd map %
9696796696967 9676 966 96 676 96 76 96 76 76 76 76 96 76,76 76,96 96,76 9676 966 76 96 76,76 0 96 96,76 96 16 96 6,76 56

rrSignTypeRef roadrunner.hdmap.Reference(ID = rrRefID);
rrMap.Signs(end+1) roadrunner.hdmap.Sign(ID = signID, Geometry = currGeom,...
SignTypeReference = rrSignTypeRef);

Figure 68: Step 8 Loop through signs and add to RRHD object. Adding Sign to RRHD.

-) MathWorks 43

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

rrMap =

roadrunnerHDMap with properties:

Author:
GeoReference:
GeographicBoundary:
Lanes:
SpeedLimits:
LaneBoundaries:
LaneGroups:
LaneMarkings:
Junctions:
BarrierTypes:
Barriers:
SignTypes:

Signs:
StaticObjectTypes:
StaticObjects:
StencilMarkingTypes:
StencilMarkings:
CurveMarkingTypes:
CurveMarkings:
SignalTypes:
Signals:

"kmcgarri”

[42.3429 -71.2613]

[2x3 double]

[666x1 roadrunner.hdmap.Lane]

[6x1 roadrunner.hdmap.SpeedLimit]
[914x1 roadrunner.hdmap.LaneBoundary]
[250x1 roadrunner.hdmap.LaneGroup]
[13x1 roadrunner.hdmap.LaneMarking]
[6x1 roadrunner.hdmap.Junction]

[3x1 roadrunner.hdmap.BarrierType]

[6x1 roadrunner.hdmap.Barrier]

[21x1 roadrunner.hdmap.SignType]

[175x1 roadrunner.hdmap.Sign]

[6x1 roadrunner.hdmap.StaticObjectType]
[6x1 roadrunner.hdmap.StaticObject]
[6x1 roadrunner.hdmap.StencilMarkingType]
[0x1 roadrunner.hdmap.StencilMarking]
[6x1 roadrunner.hdmap.CurveMarkingType]
[6x1 roadrunner.hdmap.CurveMarking]
[0x1 roadrunner.hdmap.SignalType]

[6x1 roadrunner.hdmap.Signal]

Figure 69: RRHD map with all signs added.

Next, we will loop over all the barriers of interest. Each element in the barriersOfinterest structure array
contains all the necessary information for adding barriers along the roadway.

0066266 %66 %66 90369669676 6.6 6.6 3.6 36 % 6 %6 76566 5.6 6.6 967 9636 9636 636 %36 6.6 %66 %6

% set the reference and the barriers in rrhd map %

Fe96626.696. 7696 %696 36969696 966966 966 96676 % 36 96366 %66 %66 %66 9696 9636 9696 %6 %6 % %6 %636 %6 %6 %%

barRef = roadrunner.hdmap.Reference(ID = barriersOfInterest(bx).Type);

rrMap.Barriers(end+1) = roadrunner.hdmap.Barrier(ID = barriersOfInterest(bx).Barrierld,...
BarrierTypeReference = barRef,...
Geometry = barriersOfInterest(bx).LocalCoords);

Figure 70: Step 9 Loop through barriers and add to RRHD object.
rrMap =
roadrunnerHDMap with properties:

Author: “kmcgarri®

GeoReference:
GeographicBoundary:
Lanes:

SpeedLimits:
LaneBoundaries:
LaneGroups:
LaneMarkings:
Junctions:
BarrierTypes:
Barriers:
SignTypes:

Signs:
StaticObjectTypes:
StaticObjects:
StencilMarkingTypes:
StencilMarkings:
CurveMarkingTypes:
CurveMarkings:
SignalTypes:
Signals:

[42.3429 -71.2613]

[2x3 double]

[666x1 roadrunner.hdmap.Lane]

[@x1 roadrunner.hdmap.SpeedLimit]

[914x1 roadrunner.hdmap.LaneBoundary]
[25@x1 roadrunner.hdmap.LaneGroup]

[13x1 roadrunner.hdmap.LaneMarking]

[ex1 roadrunner.hdmap.Junction]

[3x1 roadrunner.hdmap.BarrierType]

[263x1 roadrunner.hdmap.Barrier]

[21x1 roadrunner.hdmap.SignType]

[175x1 roadrunner.hdmap.Sign]

[ex1 StaticObjectType]
[ex1 StaticObject]

[ex1 StencilMarkingType]
[ex1 StencilMarking]
[ex1 CurveMarkingType]
[ex1 CurveMarking]

[ex1 SignalType]

[ex1

roadrunner.hdmap.
roadrunner.hdmap.
roadrunner.hdmap.
roadrunner.hdmap.
roadrunner.hdmap.
roadrunner.hdmap.
roadrunner.hdmap.
roadrunner.

hdmap.Signal]

Figure 71: All barriers added to RRHD map.

-} MathWorks

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

If we wanted to add other stationary objects to the scene, we could do that now, or, as in the case of
speed limits, which attach to lanes, we could add them as we build up the roadway itself. The pattern to
do so is roughly the same as what we have outlined above. Junctions are the only thing that we need to
carefully consider. For the most part, we don't need to do anything with junctions. RoadRunner will create
junctions automatically when two or more roads come together and cross one another. In this example,
we do not have a need to build up junctions.

Finally, we should save the RRHD map we have created, open an instance of RoadRunner, import the
RRHD map, and build the road into a scene. From here, you may export the scene for use in any simulator,
or you may move to RoadRunner Scenario to add vehicles and maneuvers for testing and validation.

696363636666666966 96 966 9696 9696 96 96 96 96 96 96 96 96 %6 %6 %6 %6 %6 %%

% save the map to the output file %

%7966 76.76.76 90,76 6,766 96,76 6 70,6 06 26 76 20 26 6 20,76 20 26 6 0.6 0 706 o 06

rrhdFileNameAndLoc = rrProjLoc + "Assets\" + rrhdFileName;
write(rrMap, rrhdFileNameAndLoc);

T6.76.76.76.76.6.6.6./6.6.6./6./6,/6./6.6 166 /6.6 6 6. 6,76 06 76 76 26 26 76 76

% open roadrunner application %
%a969636363636666 69666 9696 9696969696 96 96 96 96 9696 %6 %6 %%
rrApp = roadrunner(rrProjLoc, "InstallationFolder"”, rrInstallDir);

696966967676 96 965676 76 769696 565676 96 7676 96 96 %6 % %696 %6 %6 %6 % % %6 %66
% import rrhd map and build scene %
769676.96.76.96.76.76 6,76 76,76 70,6 766,76 676 70,76 960,76 9646 76 0 76 0,76 0.6 70 46,76
rrApp.importScene(rrhdFileNameAndLoc, "RoadRunner HD Map");

Figure 72: Steps 12-14 Save RRHD map as an asset in your RoadRunner project directory, open RoadRunner app, and
import RRHD map.

I A S I Pl ol OGN H 8

Blo %S B

PYRHP

Atributes

1

Figure 73: Scene generated in RoadRunner from the RRHD map. Compare the road created in RoadRunner to the insert
image from our original map viewed online (Figure 38).

-} MathWorks 45

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

About the Author

Kim McGarrity is a senior consultant at MathWorks. She works on projects related to ADAS and
Automated Driving, focusing on scene and scenario simulations using RoadRunner, and Unreal. Prior to
joining MathWorks, Kim was an Algorithm engineer at Continental, GM, and ZF/TRW where she worked
on developing ADAS features such as Blind Spot Detection, Trailer Merge Assist, and Valet Parking. Kim
holds a BA in Physics from Concordia College, an MSc in Physics from Michigan State University, and a
PhD in Statistics and Materials Science from TU Delft. MATLAB has been a strongly utilized tool across
all these positions.

" MathWorks 46

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

