"B CLEVE'S THE L-SHAPED
CORNER MEMBRANE

The MathWorks Logo is an Eigenfunction
of the Wave Equation.

We hope you've seen it many times. It’s on the covers of our books.
It’s on our business cards and stationery. It’s even on a “sponsor a
highway” sign on Route 9 in Natick, Massachusetts. But, do you
really know what the logo is?

I'm talking about the L-shaped membrane. We’ve used various
pictures of it ever since The MathWorks was founded almost twenty
years ago, but it only recently became the official company logo.

I’d like to tell you about its mathematical background.

The wave equation is a fundamental model in mathematical physics
that describes how a disturbance travels through matter. If ¢ is time
and x and y are spatial coordinates with the units chosen so that the
wave propagation speed is equal to one, then the amplitude of a wave
satisfies the partial differential equation

Pu/or = 9 u/dx + 9 u/dy’
Periodic time behavior gives solutions of the form
u(t,x,y) = sin(VA 1) W(x,y) where

OV/OX* + Ov/dy* + Av=0

The quantities A are the eigenvalues and the corresponding functions
v(x,y) are the eigenfunctions or modes of vibration. They are deter-
mined by the physical properties, the geometry, and the boundary
conditions of each particular situation. Any solution to the wave
equation can be expressed as a linear combination of these eigenfunc-
tions. The square roots of the eigenvalues are resonant frequencies.

A periodic external driving force at one of these frequencies will
generate an unboundedly strong response in the medium.

The L-shaped region formed from three unit squares is interesting
for several reasons. It is one of the simplest geometries for which
solutions to the wave equation cannot be expressed analytically, so
numerical computation is necessary. The 270° nonconvex corner
causes a singularity in the solution. Mathematically, the gradient
of the first eigenfunction is unbounded near the corner. Physically,
a membrane stretched over such a region

would rip at the corner. This singularity
limits the accuracy of finite difference
methods with uniform grids.
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A ridged microwave waveguide-to-coax adapter and a contour plot of the eleciric
field in the active region. Notice that one-fourth of the H-shaped channel is L-shaped.
(Image courtesy of Advanced Technical Materials, Inc., www.atmmicrowave.com).

The simple physical situations involving waves on an L-shaped region
include a vibrating L-shaped membrane, or tambourine, and a beach
towel blowing in the wind, constrained by a picnic basket on one-
fourth of the towel. A more practical example involves microwave
waveguides. One such device is a waveguide-to-coax adapter. The
active region is the channel with the H-shaped cross section visible

at the end of the adapter. The ridges increase the bandwidth of the
guide at the expense of higher attenuation and lower power-handling
capability. Symmetry about the dotted lines in the contour plot of the
electric field in the channel implies that only one-quarter of the cross
section needs to be modeled and that the resulting geometry is our
L-shaped region. The boundary conditions are not the same as the
membrane problem, but the differential equation and the solution
techniques are the same.

You can use classic finite difference methods to compute the
eigenvalues and eigenfunctions of the L-shaped membrane in

MATLAB with
n = 200
h =1/n

A = delsq(numgrid('L',2*n+1))/h"2
lambda = eigs(A,12,0)

The resulting sparse matrix A has order 119201 and 594409 nonzero

entries. The eigs function uses Arnoldi’s method from the MATLAB
implementation of ARPACK to compute the first 12 eiglznvalues.

This takes only a little over a minute on a 1.4 GHz Pentium laptop.

However, the corner singularity causes the computed eigenvalues to

be accurate to only three or four significant digits. If you try for more

accuracy with a finer mesh and a larger matrix, you soon exceed half ‘ !
a gigabyte of main memory.



For the L-shaped membrane and similar problems, a technique using
analytic solutions to the underlying differential equation is much more
efficient and accurate than finite difference methods. The building
blocks are the fractional order Bessel functions and trig functions

that yield eigenfunctions of circular sectors. Remember Pac-Man?
How would Pac-Man vibrate? This simple graphics character from one
of the earliest video games provides a two-dimensional test domain.
When he was not chomping ghosts, Pac-Man was three-quarters of
the unit disc. With polar coordinates r and 6, and parameters ozand 2,
the eigenfunctions of a circular sector are

v(1r,0)=J(asNAr) sin (o )

The eigenvalues are determined by the requirement that v(r,6) vanish
on the boundary of the sector. For Pac-Man, the straight edges have
0 =0 and 6 = 3m/2, so we can satisfy the boundary conditions on
these edges by choosing ¢ to be an integer multiple of two-thirds,

o; =2j/3, integer j
The circular portion of the boundary has r= 1, so we can satisfy the

boundary conditions on the circle by taking A to be a square of a zero
of a Bessel function,

J(o; NA) =0
Contour plots of the first six eigenfunctions show that two are
symmetric about the center line, 6 = 37/4, two are antisymmetric

about the center line, and two are eigenfunctions of the quarter disc,
reflected twice to fill out the entire region.

Linear combinations of these circular sector basis functions provide
accurate approximations to the eigenvalues and eigenfunctions of
other regions with corners. Let

v(1,0)=2; ¢;J (N Ar) sin(046)

First six eigenfunctions of three-quarters of the disc.

These functions are exact solutions to the eigenvalue differential
equation. They also satisfy the boundary conditions on the two edges
that meet at the origin. All that remains is to pick A and the ¢’s so
that the boundary conditions on the remaining edges are satisfied.

A least squares approach employing the matrix singular value
decomposition is used to determine A and the ¢;’s. Pick m points, (1;,6)),
on the remaining edges of the boundary. Let 1 be the number of
fundamental solutions to be used. Define an m-by-n matrix A with
elements that depend upon 4,

Au(A)=J(NAR) sin( 0), i =Lyt j =1y

Then, for any vector ¢, the vector Acis the vector of boundary values,
W(11,6;). We want to make |Ac| small without making |lc[| small. The SVD
does this job. Let 6,(A(A)) denote the smallest singular value of the
matrix A(A) and let A; denote the values of A that produce local mini-

ma of the smallest singular value,
Ay = k-th minimizer o, (A(A))

Each A, approximates an eigenvalue of the region. The n-th column
of the corresponding matrix V from the singular value decomposition
provides the coefficient vector ¢ for the linear combination.

The MATLAB function membrane uses an older version of this
algorithm to compute eigenfunctions of the L-shaped membrane.
Contour plots of the first six eigenfunctions show that the first, fifth,
and sixth are symmetric about the center line; the second and fourth
are antisymmetric about the center line; and the third is actually the
first eigenfunction of a unit square, reflected into the other two squares.

The MATLAB function 1ogo generates our company logo, a lighted,
reflective, surface plot of a variant of the first eigenfunction. After being
so careful to satisfy the boundary conditions, the logo uses only the first
two terms in the sum. This artistic license gives the edge of the logo a
more interesting, curved shape.

First six eigenfunctions of the L-shaped domain.
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