Spectral Imaging: Breast Density Measurement Using MATLAB Coder

Abha Ramesh Chandra
Sr. Technical Specialist
Philips India Limited, Bangalore
January 15, 2017
Agenda

• Breast Cancer Burden overview
• Philips MicroDose Mammography
• Problem Definition
• Challenges Encountered
• Approach to Solution
• Conclusion
Disease Burden – India

Real cancer incidence estimated 1.5-2.0 times higher than reported incidence.

Risk factors
- Hormone replacement therapy
- Obesity
- Lack of exercise
- Later age at first child birth
- Lack of Breast-feeding
- Family history

Reluctance in asymptomatic screening due to reactionary culture also leading to diagnosis at later stages.

5% (India) vs. 1.5% (USA) mortality among incidences

E&Y – Call for action: Expanding cancer care in India, 2015
MicroDose Mammography

- MicroDose Mammography.mp4
- Outstanding innovations
 - Low dose
 - High Image quality
 - Breast Density Measurement

Source: http://www.usa.philips.com/healthcare/product/HC714047US/microdose-mammography-si
Tomosynthesis (3D Mammography)

• 3D Breast Imaging
 - Creates a 3D picture of the breast using X-rays

• Advantages
 - High Cancer detection rate
 - Low Recall rate

• Tomographic reconstruction algorithm used to generate 3D/2D images

References:

BDM (Breast Density Measurement)

• What is it!
 - Identifies the Breast Composition
 - Dense Breast:
 (i) Higher Risk
 (ii) Lower Sensitivity and Specificity

• Traditionally:
 - Visual or computer-assisted assessment of 2D Mammogram (e.g. BIRADS score, Cumulus)

• Volumetric Density Assessment:
 - Estimation of actual Fibro-glandular tissues
 - Higher Consistency
BDM Advantages

Advantages:
- Improved risk estimates
- Personalized screening
- Temporal monitoring
- Therapy response
- Better dose estimates
Problem Definition

Problem Statement:
• Having a reliable & accurate BDM algorithm in MATLAB, how to get this into Production environment

Solution Options:
1. Get the MATLAB code directly in Product
2. Convert code from MATLAB to C++ manually from scratch
3. Or Look for some automated and Reliable option that can convert code from MATLAB to C++
Approach

• Option 1:
 Ruled out, as further optimizations are required.

• Option 2:
 Ruled out, as lot of Expertise, Resources and Time is required.

• Option 3:
 Can check it out.
 Found that MATLAB provides some tool known as MATLAB Coder to convert the code automatically
So, let's check out ‘MATLAB Coder’ 😊

• Expectations from MATLAB Coder:
 ➢ To get exactly same output from C++ as from MATLAB.
 ➢ To get the precision correct at least up to 6 decimal places.

• To start with MATLAB Coder we needed:
 ➢ Huge Data set, to verify MATLAB Coder output
 ➢ Boundary cases for code conversion.
Challenges

Challenges Faced:

• Regular updates in Original MATLAB code
• MATLAB Code not Coder Ready
• Instances when results were mismatching.
• Output validation (MATLAB output vs. C++ output)
MATLAB & MATLAB Coder

Benefits:

• Design issues resolved early in development
• Rapidly assessed and converted
• Development process overhead reduced
• Algorithm validated in days
• Consistent output
• High accuracy

Support from Mathworks:
During this exercise the support from the Mathworks technical support team was commendable.
MATLAB Vs. C++ Output

Matlab:

<table>
<thead>
<tr>
<th>Data Set No.</th>
<th>Param_1</th>
<th>Param_2</th>
<th>Param_3</th>
<th>Param_4</th>
<th>Param_5</th>
<th>Param_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataSet_1</td>
<td>3428.431051</td>
<td>751.14735</td>
<td>0.24507734</td>
<td>93.25448398</td>
<td>4</td>
<td>53.6</td>
</tr>
<tr>
<td>DataSet_2</td>
<td>3494.037088</td>
<td>768.880127</td>
<td>0.24560828</td>
<td>93.21472127</td>
<td>4</td>
<td>54.6</td>
</tr>
<tr>
<td>DataSet_3</td>
<td>3516.300802</td>
<td>731.2674748</td>
<td>0.23194159</td>
<td>94.12901229</td>
<td>4</td>
<td>56.1</td>
</tr>
<tr>
<td>DataSet_4</td>
<td>6776.522997</td>
<td>709.475573</td>
<td>0.11062978</td>
<td>45.22007409</td>
<td>3</td>
<td>112.2</td>
</tr>
<tr>
<td>DataSet_5</td>
<td>6657.98595</td>
<td>787.6263249</td>
<td>0.12512878</td>
<td>56.27330253</td>
<td>3</td>
<td>112.4</td>
</tr>
<tr>
<td>DataSet_6</td>
<td>524.949993</td>
<td>131.6811727</td>
<td>0.28464215</td>
<td>98.08561729</td>
<td>4</td>
<td>51.5</td>
</tr>
<tr>
<td>DataSet_7</td>
<td>532.6392096</td>
<td>249.1433539</td>
<td>0.5399299</td>
<td>100</td>
<td>4</td>
<td>44.6</td>
</tr>
<tr>
<td>DataSet_8</td>
<td>2212.330836</td>
<td>1518.467263</td>
<td>0.82122653</td>
<td>99.75996582</td>
<td>4</td>
<td>33.1</td>
</tr>
<tr>
<td>DataSet_9</td>
<td>474.7710126</td>
<td>94.32399329</td>
<td>0.22938966</td>
<td>93.17705038</td>
<td>4</td>
<td>46.8</td>
</tr>
<tr>
<td>DataSet_10</td>
<td>512.5745911</td>
<td>97.83134811</td>
<td>0.2177852</td>
<td>94.14073592</td>
<td>4</td>
<td>50.2</td>
</tr>
</tbody>
</table>

C++:

<table>
<thead>
<tr>
<th>Data Set No.</th>
<th>Param_1</th>
<th>Param_2</th>
<th>Param_3</th>
<th>Param_4</th>
<th>Param_5</th>
<th>Param_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataSet_1</td>
<td>3428.431051</td>
<td>751.1473499</td>
<td>0.245077343</td>
<td>93.25448398</td>
<td>4</td>
<td>53.6</td>
</tr>
<tr>
<td>DataSet_2</td>
<td>3494.037088</td>
<td>768.880126</td>
<td>0.245608276</td>
<td>93.21472127</td>
<td>4</td>
<td>54.6</td>
</tr>
<tr>
<td>DataSet_3</td>
<td>3516.300802</td>
<td>731.2674748</td>
<td>0.231941588</td>
<td>94.12901229</td>
<td>4</td>
<td>56.1</td>
</tr>
<tr>
<td>DataSet_4</td>
<td>6776.522997</td>
<td>709.475573</td>
<td>0.110629775</td>
<td>45.22007409</td>
<td>3</td>
<td>112.2</td>
</tr>
<tr>
<td>DataSet_5</td>
<td>6657.98595</td>
<td>787.6263249</td>
<td>0.12512878</td>
<td>56.27330253</td>
<td>3</td>
<td>112.4</td>
</tr>
<tr>
<td>DataSet_6</td>
<td>524.949993</td>
<td>131.6811727</td>
<td>0.28464215</td>
<td>98.08561729</td>
<td>4</td>
<td>51.5</td>
</tr>
<tr>
<td>DataSet_7</td>
<td>532.6392096</td>
<td>249.1433539</td>
<td>0.5399298</td>
<td>100</td>
<td>4</td>
<td>44.6</td>
</tr>
<tr>
<td>DataSet_8</td>
<td>2212.330836</td>
<td>1518.467263</td>
<td>0.82122653</td>
<td>99.75996582</td>
<td>4</td>
<td>33.1</td>
</tr>
<tr>
<td>DataSet_9</td>
<td>474.7710126</td>
<td>94.32399329</td>
<td>0.22938966</td>
<td>93.17705038</td>
<td>4</td>
<td>46.8</td>
</tr>
<tr>
<td>DataSet_10</td>
<td>512.5745911</td>
<td>97.83134811</td>
<td>0.2177852</td>
<td>94.14073592</td>
<td>4</td>
<td>50.2</td>
</tr>
</tbody>
</table>
MATLAB Vs. C++ Output

Relative Error:

<table>
<thead>
<tr>
<th>Data Set No.</th>
<th>Param_1</th>
<th>Param_2</th>
<th>Param_3</th>
<th>Param_4</th>
<th>Param_5</th>
<th>Param_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataSet_1</td>
<td>1.42019E-09</td>
<td>1.79685E-09</td>
<td>1.2807E-06</td>
<td>1.25217E-09</td>
<td>0</td>
<td>1.8559E-13</td>
</tr>
<tr>
<td>DataSet_2</td>
<td>1.57126E-09</td>
<td>1.4292E-09</td>
<td>1.67599E-06</td>
<td>4.41389E-09</td>
<td>0</td>
<td>1.8219E-13</td>
</tr>
<tr>
<td>DataSet_3</td>
<td>1.36167E-09</td>
<td>1.53979E-09</td>
<td>9.59598E-07</td>
<td>3.85005E-09</td>
<td>0</td>
<td>1.77319E-13</td>
</tr>
<tr>
<td>DataSet_4</td>
<td>1.43037E-09</td>
<td>1.69998E-09</td>
<td>4.41919E-06</td>
<td>5.49048E-09</td>
<td>0</td>
<td>8.99261E-13</td>
</tr>
<tr>
<td>DataSet_5</td>
<td>1.48183E-09</td>
<td>1.55302E-09</td>
<td>1.85415E-06</td>
<td>8.21312E-09</td>
<td>0</td>
<td>8.97661E-13</td>
</tr>
<tr>
<td>DataSet_6</td>
<td>7.31347E-11</td>
<td>2.6496E-09</td>
<td>2.44499E-07</td>
<td>9.56512E-10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DataSet_7</td>
<td>1.03803E-09</td>
<td>7.6302E-10</td>
<td>6.95508E-07</td>
<td>0</td>
<td>0</td>
<td>2.2304E-13</td>
</tr>
<tr>
<td>DataSet_8</td>
<td>1.38994E-09</td>
<td>1.75572E-09</td>
<td>2.47414E-07</td>
<td>3.84172E-09</td>
<td>0</td>
<td>3.00532E-13</td>
</tr>
<tr>
<td>DataSet_9</td>
<td>2.53177E-10</td>
<td>4.04673E-10</td>
<td>1.65012E-07</td>
<td>1.36578E-09</td>
<td>0</td>
<td>2.12556E-13</td>
</tr>
<tr>
<td>DataSet_10</td>
<td>6.94531E-10</td>
<td>3.79204E-09</td>
<td>1.5052E-07</td>
<td>4.72516E-09</td>
<td>0</td>
<td>1.98159E-13</td>
</tr>
</tbody>
</table>
Conclusion

• Highly interactive tool to use.
• Obtained optimal results using MATLAB Coder.
• Minimal relative error output between MATLAB & C++.
• Eliminated the C++ implementation effort significantly.

Recommend to use MTALAB Coder.
Appendix

The original BDM Algorithm in MATLAB is written by – Sr. Scientist Erik Fredenberg, from Sweden.