Developing and Prototyping Next-Generation Communications Systems

MATLAB EXPO 2017

Dr. Amod Anandkumar
Team Lead – Signal Processing and Communications Application Engineering Group
Proliferation of Wireless Standards

IEEE 802.15.4

LTE

WiMAX

ISDB-T

DVB-T

ADSL

Wi-Fi

TERRESTRIAL

ADVANCED
A New Generation? Why?

New Use Cases
- 4K, 8K, 360° Video
- Virtual Reality
- Remote Surgery
- Internet of Things
- Connected Vehicles

Requirements
- Ultra broadband
- Low latency
- Massive device connectivity
- Low energy and cost

Solutions
- More bands
- Increased bandwidth
- Better spectral efficiency
- Flexible air interface
- Densification
Road to 5G

Evolution of Current Standards + New Radio Technology
Developing Next Generation Wireless Technology

at least 7

Requires different design skills to be successful!
MATLAB & Simulink: Unified Wireless Design Platform for baseband, RF, and antenna modeling and simulation
MATLAB & Simulink: Unified Wireless Design Platform
for algorithm developers, system architects, HW and SW developers

HDL and C code generation

System Architecture

DSP/Algorithms
- Baseband
- Digital Front End
- DAC
- PA
- RF Front End
- Antenna

Software
- C Code
- HDL

Digital Hardware
- Processor
- FPGA
- ASIC

PROTOTYPE

INTEGRATE

IMPLEMENT

HDL and C code generation

Instrument Control Toolbox

SDR Support Packages
- Communications System Toolbox

Fixed-Point Designer
- HDL Coder
- Embedded Coder

RF Test Instruments

Multi-vendor hardware support

Software-Defined Radio

MATLAB & Simulink: Unified Wireless Design Platform
for algorithm developers, system architects, HW and SW developers

HDL and C code generation

Instrument Control Toolbox

SDR Support Packages
- Communications System Toolbox

Fixed-Point Designer
- HDL Coder
- Embedded Coder

RF Test Instruments

Multi-vendor hardware support

Software-Defined Radio
Example: Vehicular Communications

Continuous, high-speed, and authenticable safety data exchange among moving vehicles, roadway infrastructure, pedestrians, and cellular network

- Vehicle-to-Vehicle (V2V)
- Vehicle-to-Infrastructure (V2I)
- Vehicle-to-Pedestrian (V2P)
- Vehicle-to-Network (V2N)
Example: DSRC V2V Safety Scenario Simulation

Dedicated Short Range Communications

- 5.9 GHz
- PHY: IEEE 802.11p
- MAC: CSMA/CA with DCF
Example Summary

1. Visualize and model traffic scene and vehicles in motion using **MATLAB**

2. Model vehicular maneuvers, collision prediction, and collision avoidance algorithms using **MATLAB**

3. Model PHY (802.11p) using **WLAN System Toolbox**

4. Model MAC (CSMA/CA with DCF) using **SimEvents**
WLAN System Toolbox

- Standards compliant **physical layer models**:
 - 802.11a/b/g/n/ac
 - 802.11j/p
 - 802.11ah
 - 802.11ad

- Transmitter, receiver, and channel models

- Open, customizable MATLAB code

- C-code generation enabled with MATLAB Coder
Key 5G Technologies

- New Waveforms / Modulation Schemes
- Massive MIMO
- mmWave Bands
New Waveforms, Massive MIMO and mmWave Communications
Some Challenges

- **New modulation schemes**
 - Requirements: reduced out of band emissions and relaxed synchronization requirements
 - Non-orthogonal waveforms \rightarrow complex receiver design

- **High frequency – above 30GHz**
 - Large communication bandwidth \rightarrow digital signal processing is challenging
 - High-throughput DSP \rightarrow linearity requirements imposed over large bandwidth
 - Wavelength \sim 1mm \rightarrow small devices, many antennas packed in small areas

- **Large antenna arrays**
 - Antennas need to be close together to avoid grating lobes
 - Digital beamforming can be complex and power hungry (BW \times N_T, many ADCs)
 - Analog beamforming has limited capabilities
Example: 5G Waveforms over 3GPP mmWave Channel

- Modulation schemes
 - CP-OFDM, F-OFDM, W-OFDM
- Variable subcarrier spacing
 - 60 kHz
- Variable no. of RBs
 - 100
- mmWave channel model
 - 28 GHz
Introducing the 5G Library
Free Add-on for LTE System Toolbox

- 5G channel models (3GPP TR 38.900)
 - 6 GHz – 100 GHz
- New Radio (NR) Waveforms
 - (F-OFDM, W-OFDM)
- Link level simulation reference design
LTE System Toolbox

- LTE and LTE-Advanced (Rel-8 through Rel-12)
- Scope
 - FDD/TDD
 - Uplink/Downlink/Sidelink
 - Transmitter/Receiver
 - Channel models
- >200 functions for physical layer (PHY) modeling
- LTE Signal generation
- ACLR/EVM measurement
- Conformance Tests
Example: Interference Mitigation using Massive MIMO

- **System model**
 - Receiver
 - Antenna array, Beamformer, Signal Processing
 - Source of interest
 - LTE node with specific cell ID
 - Propagation channel
 - Path loss, environment
 - Interference source
 - LTE node with neighboring cell ID

Model and simulate to determine expected performance, operational limits and mitigation effectiveness
Phased Array System Toolbox

- Array design and analysis
- Advanced array processing algorithms
 - Temporal processing
 - Spatial processing
 - Space-time adaptive processing
- End-to-end system modeling
Tools for Mathematical Analysis and Modelling

- **MATLAB**
 - Linear algebra, sparse matrices, graphs, computational geometry, …

- **Symbolic Math Toolbox**
 - Simplification and manipulation, calculus, transforms, linear algebra, …

- **Optimization Toolbox**
 - Linear programming, mixed-integer linear programming, quadratic programming, …

- **Global Optimization Toolbox**
 - Pattern search, genetic algorithm, simulated annealing, …
Accelerate Simulations with Scalable Computing
DOCOMO Beijing Labs Accelerates the Development of Mobile Communications Technology

Challenge
Research, develop, and verify next-generation mobile communications technologies

Solution
Use MATLAB and Parallel Computing Toolbox to accelerate the development and simulation of innovative algorithms at the link level and the system level

Results
- Development time halved
- Simulation time reduced from weeks to hours
- Five times more scenarios verified

"With MATLAB we spend less time coding and more time developing innovative mobile communications algorithms. More importantly, with only minor modifications we can accelerate the simulation of algorithms on our computing cluster to thoroughly evaluate and verify them under a wide range of operating conditions and scenarios."

Lead Research Engineer
DOCOMO Beijing Labs

[Link to user story]
Design and Prototype a Wide Range of Wireless Systems

with Communications System Toolbox

DVB-S.2 Link, Including LDPC Coding
The state-of-the-art channel coding scheme used in the second generation Digital Video Broadcasting standard (DVB-S.2).

Defense Communications: US MIL-STD-188-110B Baseband End-to-End Link
An end-to-end baseband communications system compliant with the U. S. MIL-STD-188-110B military standard. In particular, the

EVM Measurements for a 802.15.4 (ZigBee®) System
Use the COMM.EVM System object to measure the error vector magnitude (EVM) of a simulated IEEE® 802.15.4 [1] transmitter.

Automatic Meter Reading
Use Communications System Toolbox™ to read utility meters by processing Standard Consumption Message (SCM) signals and interval

Airplane Tracking Using ADS-B Signals with Raspberry Pi and RTL-SDR
Create a remote sensing station that tracks planes using a Raspberry Pi and RTL-SDR radio. You will learn how to deploy a Simulink® model

Available Here
More Examples – 5G Waveform Exploration

in Communications System Toolbox

5G Exploration

5G Waveforms with LTE

Highlights LTE PDSCH processing with two 5G candidate waveforms, namely, Filtered-OFDM (F-OFDM) and Universal Filtered Multi-Carrier

Open Script

FBMC vs. OFDM Modulation

Compares Filter Bank Multi-Carrier (FBMC) with Orthogonal Frequency Division Multiplexing (OFDM) and highlights the merits of the new

Open Script

F-OFDM vs. OFDM Modulation

Compares Orthogonal Frequency Division Multiplexing (OFDM) with Filtered-OFDM (F-OFDM) and highlights the merits of the new

Open Script

UFMC vs. OFDM Modulation

Compares Universal Filtered Multi-Carrier (UFMC) with Orthogonal Frequency Division Multiplexing (OFDM) and highlights the merits of

Open Script

Available Here
More Examples – Beamforming

in Phased Array System Toolbox

Improve SNR and Capacity of Wireless Communication Using...

The goal of a wireless communication system is to serve as many users with the highest possible data rate given constraints such as

Open Script

Beamforming for MIMO-OFDM Systems

This example shows how to model a point-to-point MIMO-OFDM system with beamforming. The combination of multiple-input-multiple-output

Open Script

MIMO-OFDM Precoding with Phased Arrays

How phased arrays are used in a MIMO-OFDM communication system employing beamforming. The example models the radiating

Open Script

802.11ad Waveform Generation with Beamforming

Simulate beamforming an IEEE® 802.11ad™ DMG waveform with a phased array using WLAN System Toolbox™ and Phased Array

Open Script

Available Here
Designing LTE and LTE Advanced Physical Layer Systems with MATLAB

Topics include:

- Review of the advanced communications techniques forming the core of an LTE system: OFDMA and SC-FDMA multi-carrier techniques, and MIMO multi-antenna systems
- Descriptions of all of the signals and elements of the processing chain for the uplink and downlink LTE physical channels
- Methods for golden reference verification with the standard
Phased Array System Toolbox Fundamentals

This one-day course provides a comprehensive introduction to the Phased Array System Toolbox™. Themes including radar characterization and analysis, radar design and modeling and radar signal processing are explored throughout the course.

Topics include:
- Review of a Monostatic End-to-End Radar Model
- Characterize and analyze radar components and systems
- Design and model components of a radar system
- Implement a range of radar signal processing algorithms
Key 5G Technologies

- New Waveforms / Modulation Schemes
- Massive MIMO
- mmWave Bands
Implementation and Prototyping

using Model-Based Design
Over-the-air testing with SDRs & RF instruments

- Generate custom waveforms
- Transmit with SDR devices or RF instruments
- Capture signals with SDR or instruments
- Recover original data
Prototyping Workflow Using SDR Platforms

Algorithm design

Simulation Model

SDR testing with live signal I/O

Generate HDL Code

Implementation Model

Verify on SDR hardware

RF I/O

Streaming I/O

MATLAB & SIMULINK

SDR Hardware

Analog Front-End

Pre-configured FPGA Algorithms

User-Designed Algorithm

User-Designed Algorithms

Information

Desktop Design and Simulation

Webinar: 5G/LTE/WLAN: Waveform Generation, Simulation, Measurement and Over-the-Air Testing
Supported SDR Platforms

Xilinx Zynq-Based Radio
- ZC706, ZedBoard, PicoZed
- ADI FMCOMMS1/2/3/4

Xilinx FPGA-Based Radio
- Virtex-6 ML605, Spartan-6 SP605
- ADI FMCOMMS1, Epiq FMC-1Rx

USRP Radio
- USRP2, N200/210
- B200/B210, X300/310
- E310

Analog Devices ADALM Pluto Radio

RTL-SDR Radio
Challenge
Implement FPGA based radio signal processing in a small team mainly consisting of people with signal processing and programming background

Solution
Use HDL Coder to generate VHDL for signal processing

Results
- Successful implementation running on FPGA
- Generated code easy to integrate into main design
- Very short lead time for changes in design

Updated: Communication Systems Design with MATLAB

- Advanced communications topics
 - MIMO / OFDM
 - LDPC / Turbo Codes / OSTBCs
 - Examples using IEEE 802.11 (Wi-Fi) & LTE-based system and waveform parameters

- New hands-on content using Software Defined Radios
 - Radio-in-the-loop using RTL-SDR and USRP B210
 - Build end-to-end OFDM system using a USRP
 - Demonstrate a 2x2 OFDM-MIMO over-the-air system using USRPs
DSP for FPGAs

Topics include:

- Introduction to FPGA hardware and technology for DSP applications
- DSP fixed-point arithmetic
- Signal flow graph techniques
- HDL code generation for FPGAs
- Fast Fourier Transform (FFT) implementation
- Design and implementation of FIR, IIR and CIC filters
- CORDIC algorithm
- Design and implementation of adaptive algorithms such as LMS and QR algorithm
- Techniques for synchronisation and digital communications timing recovery
New: Software Defined Radio with Zynq using Simulink

- Learn the Model-Based Design workflow from simulation of RF chain, testing with Radio I/O to moving design to chip

- Get hands-on experience with PicoZed
 - Setting up and communicating with board
 - Capture over-the-air signal and process in MATLAB
 - AD9361 configuration
 - HW/SW co-design for SDR
What’s New for Wireless System Design

- WINNER II Channel Model
- Support for USRP® E310 SDRs
- Support for ADALM-PLUTO® SDRs
- Synchronize multiple USRP® radios
- Scattering MIMO channel model
- AD9371 Transceiver model
Summary

MATLAB & Simulink: Unified Wireless Design Platform

- Trusted, diverse, open (white-boxed) libraries
- Fast simulations with scalable computing across CPU, GPU, and Clusters
- Unified modelling and simulation of digital, RF, and antenna systems
- Integrated platform for mathematical analysis, and algorithm, software, & hardware development

Enables rapid iteration between theory and implementation
Call to Action

- Learn more about accelerating simulations using parallel computing

Parallel Computing with MATLAB and Simulink
16:45–17:30

Large-scale simulations and data processing tasks take an unreasonably long time to complete or require a lot of computer memory. Users can expedite these tasks by taking advantage of high-performance computing resources, such as multicore computers, GPUs, computer clusters, and cloud computing services.

- Download whitepapers and technical articles
 - [Wireless Design with Today’s MATLAB](#)
 - [Evaluating 5G Waveforms Over 3D Propagation Channels with the 5G Library](#)
 - [Hybrid Beamforming for Massive MIMO Phased Array Systems](#)
Speaker Details
Email: Amod.Anandkumar@mathworks.in
LinkedIn: https://in.linkedin.com/in/ajga2
Twitter: @ Dr_Amod

Contact MathWorks India
Products/Training Enquiry Booth
Call: 080-6632-6000
Email: info@mathworks.in

Your feedback is valued.
Please complete the feedback form provided to you.