Battery: a good answer to energy storage across industries…
… with some risks to keep under control
CHALLENGE: Design and verify battery management functions
Monitor Cell Voltage and Temperature

Isolate battery pack from source and load

Balance Battery Cell

Estimate State-of-charge (SoC)

Current and Power Limits (Derating)

Control the charging profile
SOLUTION: Perform **system-level simulations** with **Simulink**
BMS Development Workflow with Simulink and MBD

Desktop Simulation

Simulink Model
- **Controller**:
 - Algorithms for cell balancing, State-of-Charge
- **Plant**:
 - Environment, source, battery, circuit, load

Real-Time Simulation

Rapid Prototyping
- Algorithms running on a real-time computer

HIL Testing
- Behavioral models running on a real-time computer

Hardware Implementation

Hardware Prototyping
- Battery packs, circuit, source, load

Production Code
- Algorithms running on an embedded microcontroller

MATLAB EXPO 2019
Agenda

- **BMS Model Demo**
 - Physical Modeling
 - BMS Algorithms

- **Deployment on Hardware**
 - Code Generation
 - Real-Time Testing
BMS Model Overview

- **System Model**
 - Controller: BMS Algorithms
 - Plant: Physical Modeling

- **Advantages of System-Level Simulation:**
 - Quick design iterations
 - Early results in the development workflow
 - Possible to test each part alone or together in the same model (Closed-loop testing)
Simulation Results Overview

- **Early results** during design process

 ➔ Possible to refine or add missing requirements

- **Example:**
 - Temperature differences
 - Potential impact on cells ageing

 ➔ Need of a cooling system?
PLANT: Battery Physical Modeling with Simulink and Simscape
Battery Cell Modeling

- **Thevenin Model** (1st Order) to represent electrical behavior of battery cell

- Model based on Simscape Foundation Library components…

- ... with dependance upon SoC and temperature by modifying source code
Battery Cell Modeling

- What about **thermal behavior**?
 - Cell heat up under load
 - Convection heat flux between cells
 - Thermal exchange with environment

Thermal component from Foundation Library

Multidomain
Battery Pack

Possible to model different architecture or technological choice of a subsystem in the same model.
Tuning a Lithium Battery Model to Match Measured Data

Cell Physical Model:

\[E_m \]

\[R_0 \]

\[R_1 \]

\[C_1 \]

Lithium Cell Characteristic Measurement:

<table>
<thead>
<tr>
<th>(E_m)</th>
<th>SOC 1</th>
<th>SOC 0.9</th>
<th>SOC 0.8</th>
<th>…</th>
<th>SOC 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>5°C</td>
<td>4.20 V</td>
<td>4.12 V</td>
<td>4.05 V</td>
<td>…</td>
<td>3.09 V</td>
</tr>
<tr>
<td>20°C</td>
<td>4.18 V</td>
<td>4.09 V</td>
<td>4.01 V</td>
<td>…</td>
<td>3.05 V</td>
</tr>
<tr>
<td>40°C</td>
<td>4.15 V</td>
<td>4.02 V</td>
<td>3.97 V</td>
<td>…</td>
<td>3.01 V</td>
</tr>
</tbody>
</table>

OBJECTIVE: Match model behavior to tests measurements
Estimating Parameters Using Measured Data

1. **Import** measurement datas

2. **Identify** parameters and set range

3. **Perform estimation**
Advantages of Physical Modeling

- With this physical model, you can
 - **Evaluate** your architecture
 - **Optimize** your design
 - **Refine** and **Validate** your requirements

+ Enable **Closed-loop testing of your control algorithms** to verify and validate it
CONTROLLER: BMS Algorithms with Simulink and Stateflow
Battery Management System Functions

- Battery State
- Fault Management
- Battery isolation control
- Derating Calculations
- State-of-Charge Estimation
Fault Management

- Monitoring three physical channels:
 - Battery Pack **Current**
 - Cell **Voltage**
 - Cell **Temperature**

- Broadcasting Fault Presence to other BMS subsystems
 → Contactor Opening (SAFETY)
 → BMS_State == FAULT
State-Of-Charge Estimation

- Two methods:
 - **Coulomb Counting**
 - ✓: Simple to implement / low computational needs
 - ✗: Accuracy and robustness

 - **Kalman Filtering**
 - ✓: High accuracy by including a nonlinear battery model which uses current and voltage measurement
 - ✗: Slightly higher computational effort

ready to use block available in Control System Toolbox or System Identification Toolbox
Agenda

- BMS Model Overview
 - Physical Modeling
 - BMS Algorithms

- Deployment on Hardware
 - Code Generation
 - Real-Time Testing
Generate C/C++ Code From BMS Models

- Generate target optimized C/C++ code
- Fine-tune code optimizations, package and build generated code
Real-Time Testing of Battery Management System

- Testing BMS with Battery Cells
 - Longer test cycles
 - Difficult to test fault conditions
 - Difficult to reproduce results
 - Limited test automation

 ➔ Costs (Hardware prototype, possible failure, several people to perform tests, etc)
Hardware-In-Loop Testing of Battery Management System

- Testing BMS with Emulated Battery Cells
 - Reduce testing time
 - Test fault conditions safely
 - Automate testing
BMS Development with Simulink

Reduce Design Iteration Time

Collaborate Across Domains

Gain Confidence in Design

MATLAB EXPO 2019