
MATLAB EXPO 2019

Presenter:
Ali Marjaninejad
Todays Robots

Expectation

Reality

BOSTON DYNAMICS

2005
BIG DOG

2012
LS3

2015
SPOT

2017
SPOT MINI

2009
PETMAN

2013
RHEX

2016
WILDCAT

2018
HANDLE

2018
SPOT MINI (+ARM)

www.eset.com
The answer might be in the physical structure!
Other limitations

• No model of the plant

 • A precise model of the system is not available in many scenarios

 • Even when there is a model, it will lack many details such as skin effects

 • Changes in the system

 • Contact dynamics

• No model of environment

 • Is only available for simulations or lab environment (even then, it will be with great simplifications)

 • Will not be applicable for unpredictable scenarios such as natural disasters or exploration missions

https://news.usc.edu/69355/perfecting-a-fully-functioning-prosthetic-hand/
Other limitations (continued)

- **Minimal dependency on real-time feedback**
 - Real-time feedback is not available in many scenarios including biological systems
 - Systems that heavily rely on error-correction are prone to instability and can consume lots of power

- **Data/time efficiency**
 - Data/time limitations in physical world are strict
 - Opportunity Cost
 - Evolutionary pressure

Hoffman et al., 2008
Youtube.com/Alltime10s
Problem statement

• Producing autonomous functional movements in a tendon-driven system

• With limited experience

• Without any prior model or simulation of the system or the environment

• Without any real-time feedback
How did we solve this?

- 3 tendons
- 2 DoFs
- Back-drivable motors

Darío Urbina-Meléndez
How did we solve this?

• Two-level control structure (Hierarchical learning)

 • Lower-level
 • Create an initial inverse model using data collected from motor babbling

 • Higher-level
 • Explore a reduced set of task parameters via reinforcement learning
 • Refine the inverse model (lower-level) with every each attempt
• **G2P: Motor Babbling** (lower-level controller)
• **G2P: Reinforcement Learning** (Higher-level controller)
• G2P: Reinforcement Learning (Higher-level controller)
• **G2P: Reinforcement Learning** (Higher-level controller)
Autonomous fusion in a tendon–drive actuation system

Ali Marjaninejad
Darío Urbina-Meléndez
Brian A. Cohn
Francisco J. Valero-Cuevas
Results
Results
Results

Good-enough gets you a long way!

Colors represent the independent reinforcement runs, and match with the figure above.

- First attempt to break above the reward threshold
- Attempt which yielded the highest reward
- Attempt

Polygons show the enclosing shape for all attempts of a given replicate that yielded an above-threshold reward.
Results
What is next?
What is the added value by MATLAB to this project?

- Common among many academic disciplines
- Flawless inter-toolbox communications
- Reproducibility
- Excellent support
Acknowledgements

Darío Urbina-Meléndez

Francisco Valero-Cuevas

Brian Cohn
Acknowledgements
See, Feel, Act: Hierarchical Learning for Complex Manipulation Skills with Multi-sensory Fusion
Nima Fazeli et. al. 2019
Dexterous Manipulation with Deep Reinforcement Learning:

https://sites.google.com/view/deeprl-handmanipulation
ROBEL: RObotics BEnchmarks for Learning with low-cost robots

ROBEL's open source platforms are modular, easy to build and extend

D'Claw

D'Kitty

https://sites.google.com/view/roboticsbenchmarks
Learning Dexterous Manipulation Policies from Experience and Imitation

Vikash Kumar*, Abhishek Gupta^, Emanuel Todorov*, Sergey Livine^

*University of Washington, Seattle ^University of California, Berkeley

International Journal of Robotics Research

Thank you!
Supplementary slides
Trajectories

One possible time history of feasible command signals

Motor 1

Motor 2

Motor 3

Kinematic trajectory
Trajectories
Table 1 | Pseudo code for the RL

while $R < \text{Reward_threshold}$

 $f_\text{bar} = \text{Uniform_distribution}([0.15, 1])$

 $R = \text{execute}(F_\text{bar})$

end

$F_\text{best} = F_\text{bar}$

$R_\text{best} = R$

for $i = 1$ to 15

 $F_\text{bar} = \text{Normal_distribution}(F_\text{best}, \text{sigma}.*\text{Identity}(10))$

 $F_\text{bar} = \max(\min(F_\text{bar}, f_M), f_m)$

 $R = \text{execute}(F_\text{bar})$

if $R > R_\text{best}$

 $R_\text{best} = R$

 $F_\text{best} = F_\text{bar}$

 $\text{sigma} = (a - R_\text{best})/b$

end

end
• **Aim 2:** Assessing the contribution of sensory signals on learning and devise efficient method to collect and utilize them

• **Aim 2.1:** Using simple kinematic feedback to compensate unmodeled dynamics (perturbations, contact dynamics, model inaccuracies) and to enhance the learning process

- Robustness to delays and noise in sensory signal
- Robustness to unmodeled dynamics
- Minimal reliance on feedback
- Generalizable to different designs
- Enhances both performance and learning

- Minimalistic approach (joint angle readings only)
- Tendon-driven (2-DoF 3-tendons)
• **Aim 2:** Assessing the contribution of sensory signals on learning and devise efficient method to collect and utilize them

 • **Aim 2.1:** Using simple kinematic feedback to compensate unmodeled dynamics (perturbations, contact dynamics, model inaccuracies) and to enhance the learning process
• **Aim 2:** Assessing the contribution of sensory signals on learning and devise efficient method to collect and utilize them

• **Aim 2.1:** Using simple kinematic feedback to compensate unmodeled dynamics (perturbations, contact dynamics, model inaccuracies) and to enhance the learning process
• **Aim 2:** Assessing the contribution of sensory signals on learning and devise efficient method to collect and utilize them

• **Aim 2.1:** Using simple kinematic feedback to compensate unmodeled dynamics (perturbations, contact dynamics, model inaccuracies) and to enhance the learning process
Results:

Simple Kinematic Feedback Enhances Autonomous Learning in Bio-Inspired Tendon-Driven Systems

Physical System Demonstrations
Physical system results:
Physical system results:
Simulation results:
Simulation results:
Results (cntd.):

- Enhanced accuracy in all experiments

- Robust to delays

\[\text{mean error (rads)}\]

open-loop

close-loop

\[\text{cyclical (sim) point-to-point (sim) cycle period (sim) cyclical (phys) point-to-point (phys) cycle period (phys) with contact refinements (w/ shorter babbling)}\]