System Composer
Intuitively design system and software architectures

Description

Architecture
System Composer
Perform trade studies based on data driven analysis to optimize architectures

Add custom data
Create analysis model
Calculate mass roll-up data
System Composer
Tackle Architecture complexity with spotlight views
System Composer
Tackle Architecture complexity with views

Composition

Views
Generate Simulink models from architecture components

Link Simulink models to architecture components

System Composer

System and software architectures connected to implementations in Simulink

Autogenerated by System Composer on March 25, 2019 2:00 pm EST
System Composer
Link system models to Simulink Requirements
System Composer

Be Intuitive
Facilitate Analysis
Tackle Complexity
Enable Implementation

Digital Thread for Requirements Coverage Reporting and Impact Analysis

Simulink Requirements
System Composer and Model-Based Design
A Systems Engineer

Simulink Requirements

Systems engineering techniques are used in complex projects: spacecraft design, computer chip design, robotics, software integration, and bridge building. Systems engineering uses a host of tools that include modeling and simulation, requirements analysis and scheduling to manage complexity.

Simulink Models

MATLAB EXPO 2019
Requirements, Models and Tests – Bottom-up
Systems Engineering and Requirements – Top Down
Independence Forced by Tooling

Requirements

Models

Tests
Flexibility between Systems and Software

System Composer Models and Requirements

Simulink Models

Simulink Test
Now let’s see it in action
How to run the DeHavilland model:

Index:
1.2 Communications
1.3 Payload Capabilities
1.4 Construction
1.4.1 Modularity
1.4.2 Propulsion Power
1.5 Flying Qualities
2 Ground Station Capabilities
3 BLOS Capabilities

Implemented:
- Communications
- Payload Capabilities
- Construction
- Modularity
- Propulsion Power
- Flying Qualities
- Ground Station Capabilities
- BLOS Capabilities
How to run the DeLavilland model:
1. See the Aerospace Broker User’s Guide for instructions to set up FlightGear.
2. Install the dhc2 geometry model to FlightGear’s data/Aircraft directory. The geometry is downloadable from www.flightgear.org.
3. To start FlightGear, access the aircraft.png file and set up the required hardware.

<table>
<thead>
<tr>
<th>Index</th>
<th>Summary</th>
<th>Implemented</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Payload Capabilities</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>Construction</td>
<td></td>
</tr>
<tr>
<td>1.4.1</td>
<td>Modularity</td>
<td></td>
</tr>
<tr>
<td>1.4.2</td>
<td>Propulsion Power</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>Flying Qualities</td>
<td></td>
</tr>
</tbody>
</table>
#35: Propulsion Power

Engine
Nine-cylinder, air-cooled, radial aircraft engine

Fuel type
80/87 grade aviation gasoline

Dry weight
1.03 kW/kg: 290 kg

Power output
400 hp (298 kW) at 2,200 RPM up to 5,000 ft (1,500 m)
Electrical Subsystem

Propulsion Power Subsystem

Actuator Power Subsystem
<table>
<thead>
<tr>
<th>Instances</th>
<th>Mass</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAS_reference_architecture Electric_budgetRollup</td>
<td>392.33</td>
<td>175614300</td>
</tr>
<tr>
<td>BVLOS Navigation</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ground Station</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Communication Box</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ground Station GPS interface</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>USB Serial Converter</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wireless Communication Subsystem</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GPS receiver</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Guidance and Navigation Computer</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Flight Commands</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Payload Computer</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vehicle</td>
<td>392.33</td>
<td>175614300</td>
</tr>
<tr>
<td>Communications Subsystem</td>
<td>2.63</td>
<td>56050</td>
</tr>
<tr>
<td>Automatic Dependent Surveillance-Broadcast</td>
<td>0.05</td>
<td>5000</td>
</tr>
<tr>
<td>C-Band Radio Modem</td>
<td>0.05</td>
<td>2000</td>
</tr>
<tr>
<td>KU-Band Radio TX/RX</td>
<td>2.5</td>
<td>50000</td>
</tr>
<tr>
<td>On-Board GPS</td>
<td>0.01</td>
<td>50</td>
</tr>
<tr>
<td>Radio RX PPM/PWM</td>
<td>0.02</td>
<td>1000</td>
</tr>
<tr>
<td>Electrical Subsystem</td>
<td>143.15</td>
<td>175356090</td>
</tr>
<tr>
<td>Actuator Power Subsystem</td>
<td>8</td>
<td>300000</td>
</tr>
<tr>
<td>Power Distribution</td>
<td>10</td>
<td>10000</td>
</tr>
<tr>
<td>Power Monitor</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Power Source</td>
<td>20</td>
<td>10000</td>
</tr>
<tr>
<td>Propulsion Power Subsystem (Electric)</td>
<td>100</td>
<td>175000000</td>
</tr>
<tr>
<td>Vehicle Power Subsystem</td>
<td>5</td>
<td>50000</td>
</tr>
<tr>
<td>apiRegulator</td>
<td>0.05</td>
<td>20</td>
</tr>
<tr>
<td>commRegulator</td>
<td>0.05</td>
<td>10700</td>
</tr>
<tr>
<td>piRegulator</td>
<td>0.05</td>
<td>2000</td>
</tr>
<tr>
<td>Environment</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Key Takeaways

- System Composer connects architectures with requirements and simulation
- A flexible canvas
- Enables analysis and simulation
- Helps manage complexity
Learn More

- System Composer Webpage
- Simulink Requirement Webpage
- System Modeling and Simulation Webpage
- See more at the System Modelling demo station
 - Including AUTOSAR composition authoring

- Trial