MATLAB EXPO 2019

Pixels to Features to Models
Object Detection and Image Segmentation

Matt Elliott
Agenda

- Introduction
 - Applications
 - Computer vision tasks
 - Choosing an approach

- Examples
 - ‘Traditional’ image processing
 - Deep learning

- Getting started
Computer Vision Tasks

Automated Driving

Manufacturing

Medical Imaging
Computer Vision Tasks

Where are the cars?
Where can I drive?
How many parts?
Are they damaged?
Is this a tumour?
How large is it?
Computer Vision Tasks

- Image classification
- Object detection
- Semantic segmentation
- Instance segmentation

Adapted from arXiv:1704.06857
Two approaches to computer vision

‘Traditional’ Image Processing
Two approaches to computer vision

Machine Learning
Machine Learning v Deep Learning

Machine Learning learns tasks using manually extracted features

Deep Learning learns both features and tasks directly from data
Examples

Two examples to demonstrate these approaches:

1. Traditional image processing for segmentation
2. Deep learning for object detection
Example 1: Part Inspection

Challenge:
- Find all of the items in the image
- Classify them - hook, nut or washer

Data
- Small number of images, unlabelled
- Taken from fixed position, controlled lighting
Two approaches to computer vision

‘Traditional’ Image Processing
Load Image

Import image

\[I = \text{imread('nutsAndBolts.png')}; \]

Convert to grayscale

\[I_{\text{gray}} = \text{rgb2gray}(I); \]
\[\text{imshow}(I_{\text{gray}}) \]
Segmentation

- Next we want to segment the image

- Two routes:
 - Writing MATLAB code
 - Apps (and then generating code)
▪ Next segment out the parts
▪ Two routes:
 – Writing MATLAB code
 – Apps (and then generating code)

Segmentation
In code

```
BW = imbinarize(Igray, 'adaptive', 'Sensitivity', 0.52, ... 'ForegroundPolarity', 'dark');
```
In code

BW = imbinarize(Igray, 'adaptive', 'Sensitivity', 0.52,...
 'ForegroundPolarity', 'dark');

BW = incompoment(BW);
In code

BW = imbinarize(Igray, 'adaptive', 'Sensitivity', 0.52,...
 'ForegroundPolarity', 'dark');

BW = imcomplement(BW);

radius = 9;
decomposition = 0;
se = strel('disk', radius, decomposition);
BW = imclose(BW, se);
In code

```matlab
BW = imbinarize(igray, 'adaptive', 'Sensitivity', 0.52,...
    'ForegroundPolarity', 'dark');

BW = imcomplement(BW);

radius = 9;
decomposition = 0;
se = strel('disk', radius, decomposition);
BW = imclose(BW, se);

se2 = strel('disk', 3, 0);
BW = imopen(BW, se2);
```
In code

```matlab
BW = imbinarize(Igray, 'adaptive', 'Sensitivity', 0.52,...
     'ForegroundPolarity', 'dark');

BW = imcomplement(BW);

radius = 9;
decomposition = 0;
se = strel('disk', radius, decomposition);
BW = imclose(BW, se);

se2 = strel('disk', 3, 0);
BW = imopen(BW, se2);

BW = imfill(BW, 'holes');
```
Classification

Going to classify the parts based on their area

```matlab
[regions, numPixelRegions] = bwlabel(BW);
imshow(label2rgb(regions))
```
Classification

Going to classify the parts based on their area

```matlab
[regions, numPixelRegions] = bwlabel(BW);
imshow(label2rgb(regions))

stats = regionprops(regions, 'all');
for k=1:length(stats)
    text(stats(k).Centroid(1),stats(k).Centroid(2),...
        sprintf('%3d',stats(k).Area), 'Hor', 'Center', 'Vert', 'middle')
end
```
Classification

```matlab
histogram(Area, 1000:100:4000)
xlabel('Area (pixels)')
ylabel('Number of Parts')
```

```matlab
minArea = [1300 1900 3200];
maxArea = [1800 2200 4100];
partNames = {'nut', 'ring', 'screw'};
partColors = {'magenta', 'green', 'cyan'};
Ip = 1;
for k=1:3
    idx = Area > minArea(k) & Area < maxArea(k);
    Iparts = insertObjectAnnotation(Iparts,...
        'rectangle', vertcat(stats(idx).BoundingBox),...          
        partNames{k}, 'Color', partColors{k});
end
imshow(Iparts)
```
Example 1: Part Inspection

- ‘Basic’ image processing can solve this problem well
- Single feature (area) can be used to classify
- Fast, and east to interpret

MATLAB provides:
- High-level functions to chain together
- Apps to get started/learn functions
- Simple route to deployment
Adding more features

- More complex classifications will require more features
- More features leads to a more complicated model
 - Machine Learning
- Other ways to extract features
 - e.g. Visual bag of words
Example 2: Deep Learning

Challenge:
- Build an object detector to find cars

Data:
- Many images, each containing one or more cars
- Large variations in angle, lighting etc
- Labelled with bounding boxes (hopefully)
Two approaches to computer vision

Machine Learning
Deep Learning Workflow

Prepare Data
- Data access and preprocessing
- Ground truth labeling

Train Model
- Model design, Hyperparameter tuning
- Model exchange across frameworks
- Hardware-accelerated training

Deploy
- Multiplatform code generation (CPU, GPU)
- Edge deployment
- Enterprise Deployment
Dedicated MATLAB apps for automating and simplifying the labelling process.
Prepare Data

- Dedicated MATLAB apps for automating and simplifying the labelling process
- Split data in training and test sets
- datastore objects to manage collections of data

```matlab
imdTrain = imageDatastore(trainingDataTbl{:,'imageFilename'});
blsTrain = boxLabelDatastore(trainingDataTbl{:,'vehicle'});
trainingData = combine(imdTrain,blsTrain);
```
Train Model

- Using YOLOv2 model architecture
 - Start-of-the-art object detector
 - Capable of running on real time video
 - Documented example

- Two stages:
 - Feature extraction layers – use a pretrained research network
 - Detector layers – build ourselves

- Use Deep Network Designer to build the network graphically
Train Model

Next define training options

```matlab
options = trainingOptions('sgdm', ...
    'MiniBatchSize', 16, ..., 
    'InitialLearnRate',1e-3, ... 
    'MaxEpochs',20);
```

And train the model

```matlab
detector = trainYOLov2ObjectDetector(trainingData, lgraph, options);
```
Testing

Evaluate model performance on validation images

```matlab
I = imread(testDataTbl.imageFilename{1});

% Run the detector.
[bboxes,scores] = detect(detector,I);

% Annotate detections in the image.
I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
imshow(I)
```
Testing

Evaluate model performance across training and test sets:
- Recall – what proportion of the cars do I detect?
- Precision – of the detections I make, what proportion are correct

Look out for:
- Underfitting – performance poor on training and test data
- Overfitting – good performance on training data, poor on test data

Iterate to improve the model
Example 2: Deep Learning

- Deep learning a good fit because of variation in the data
- Learns both a feature representation and a detection model

MATLAB provides:
- Graphical tools for labelling and network design
- Pretrained models to build on top of
Deploying Algorithms

MATLAB Coder
GPU Coder

Embedded Hardware
C, C++, CUDA

Enterprise Systems
Standalone Application
C/C++, Java, Python, .NET, MATLAB Production Server

MATLAB Compiler
MATLAB Production Server
Musashi Seimitsu Industry Co., Ltd.
Detect Abnormalities in Automotive Parts

Automated visual inspection of 1.3 million bevel gear per month

MATLAB use in project:
- Preprocessing of captured images
- Image labelling and annotation
- Deep learning based analysis
 - Various transfer learning methods (Combinations of CNN models, Classifiers)
 - Estimation of defect area using Class Activation Map
 - Abnormality/defect classification
- Deployment to NVIDIA Jetson using GPU Coder
Summary

- Segmentation and object detection form the basis of many common computer vision tasks
- Select image processing or machine learning approaches based on specifics of your problem

- MATLAB supports full workflow for both routes:
 - Easy data management
 - Apps to get started
 - Robust implementations of mathematical methods
 - Visualisations tools
 - Deployment to enterprise and embedded systems
 - Wide range of examples to adapt to your projects
What Next?

- Deep Learning Onramp

- Other talks
 - AI techniques for Signal, Time-series and Text Data
 - Automated Driving System Design

- Demo stands
 - Deep Learning and Reinforcement Learning
 - Driverless – Science Museum exhibition stand

- Doc examples

- Application Engineer support