# MATLAB EXPO

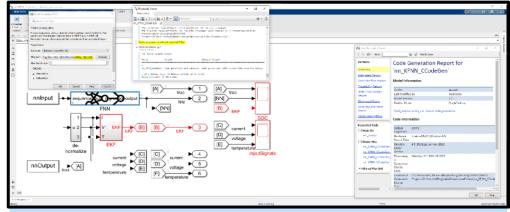
딥러닝을 위해 MATLAB과 TensorFlow/PyTorch 함께 사용하기

김종남 부장, 매스웍스코리아

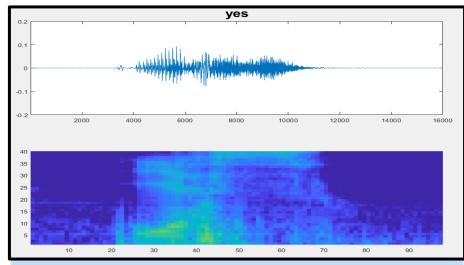




## Interoperability has an impact across different vertical applications



**Controls/ MBD workflows:** models imported from OSS are a part of a bigger system



Audio/ Signal Processing: (call dataprocessing in MATLAB from Python)

## Ways to Interoperate with TensorFlow and PyTorch



Python Interface

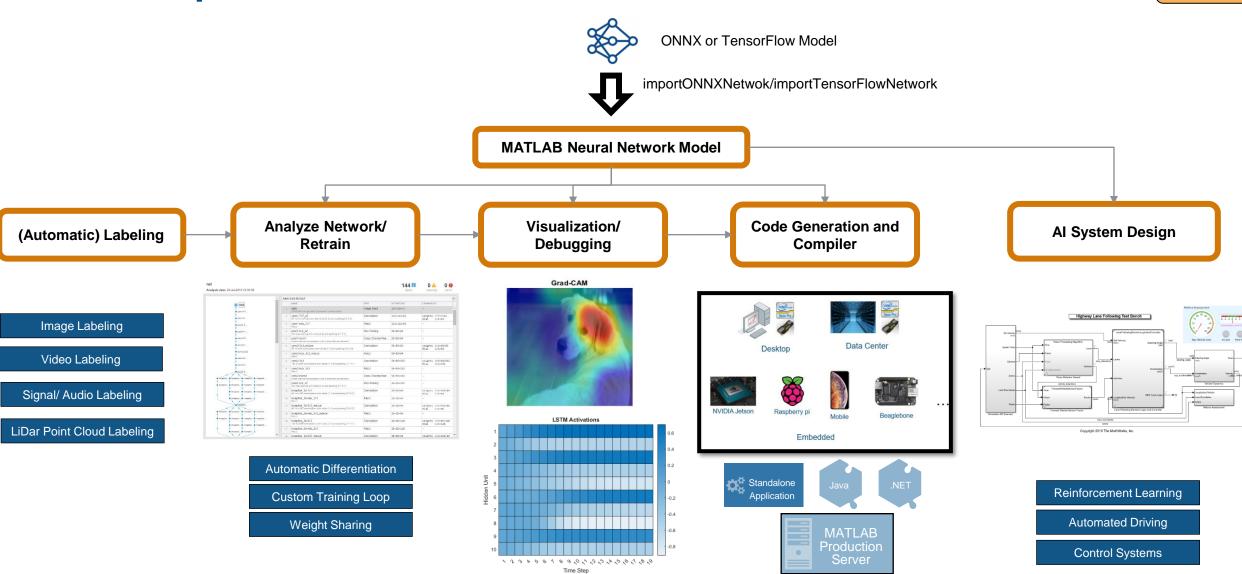
MATLAB Engine

MATLAB-Python Coexecution



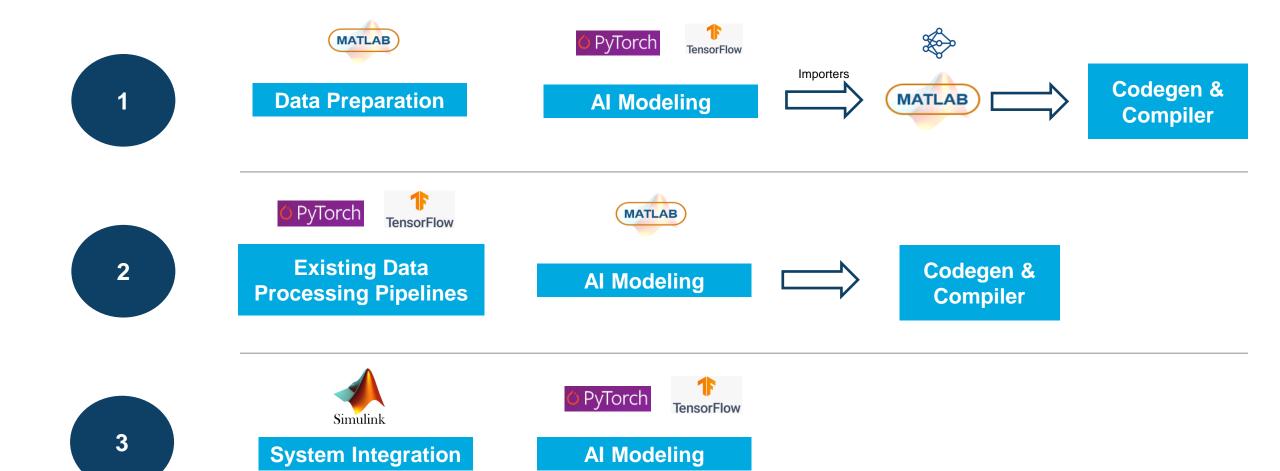
## **Model Import Workflow**

Model Exchange



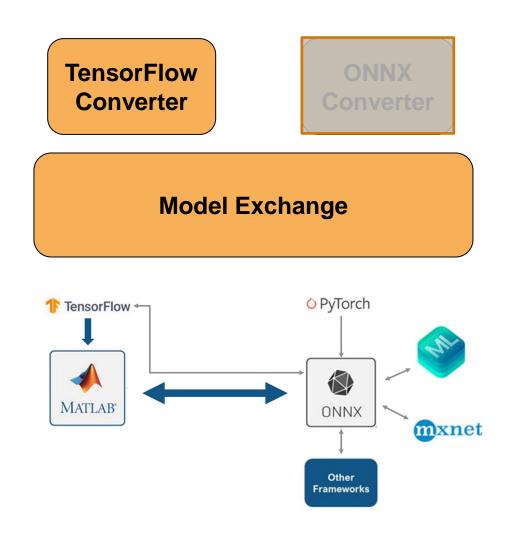
## **MATLAB-Python Co-execution Workflows**

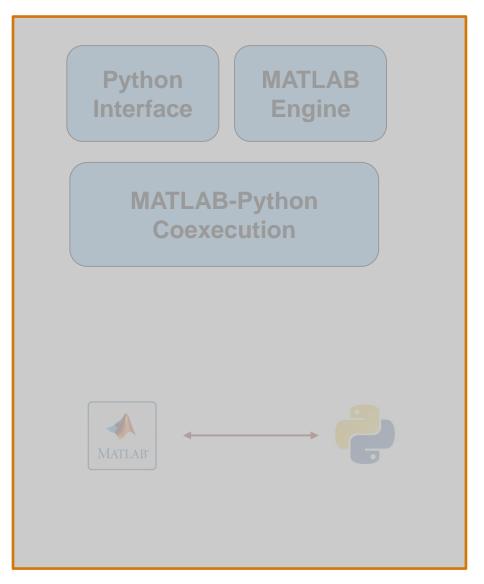
Coexecution



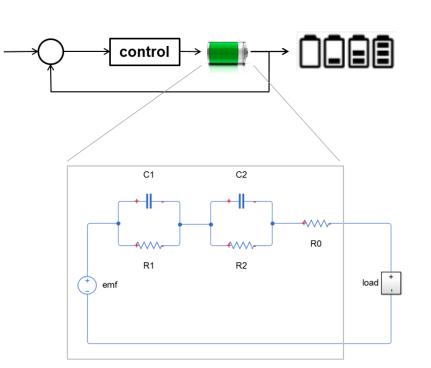
# Model Exchange and Complete Al Workflow

# Ways to Interoperate with TensorFlow and PyTorch - TensorFlow Converter





Case 1- Example: Battery Management Demo



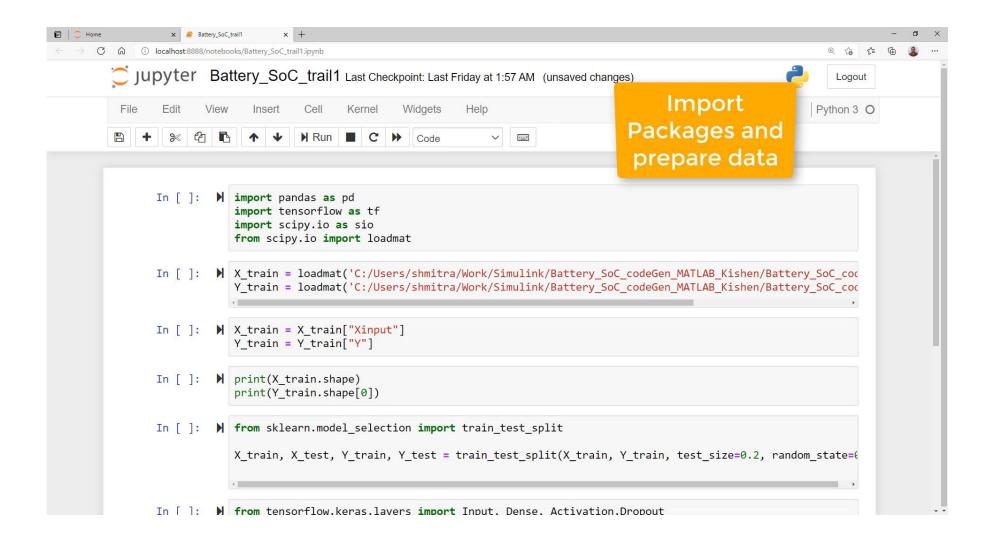
| Ⅲ 669956x6 <u>table</u> |         |         |             |                        |                            |             |
|-------------------------|---------|---------|-------------|------------------------|----------------------------|-------------|
|                         | 1       | 2       | 3           | 4                      | 5                          | 6           |
|                         | Current | Voltage | Temperature | Moving average Current | Moving average temperature | battery_SOC |
| 1                       | 0.3851  | 0.7510  | 0.3031      | 0.3851                 | 0.7510                     | 0.2064      |
| 2                       | 0.3852  | 0.7510  | 0.3046      | 0.3851                 | 0.7510                     | 0.2064      |
| 3                       | 0.3852  | 0.7510  | 0.3061      | 0.3852                 | 0.7510                     | 0.2064      |
| 4                       | 0.3852  | 0.7510  | 0.3076      | 0.3852                 | 0.7510                     | 0.2064      |
| 5                       | 0.3852  | 0.7510  | 0.3091      | 0.3852                 | 0.7510                     | 0.2064      |
| 6                       | 0.3852  | 0.7510  | 0.3106      | 0.3852                 | 0.7510                     | 0.2064      |
| 7                       | 0.3852  | 0.7510  | 0.3120      | 0.3852                 | 0.7510                     | 0.2064      |
| 8                       | 0.3852  | 0.7510  | 0.3135      | 0.3852                 | 0.7510                     | 0.2064      |
| 9                       | 0.3852  | 0.7510  | 0.3150      | 0.3852                 | 0.7510                     | 0.2064      |
|                         | 0.0050  | 0.7540  | 2 2455      | 0.0050                 | 0.7540                     | 0.000       |

**Predictors** 

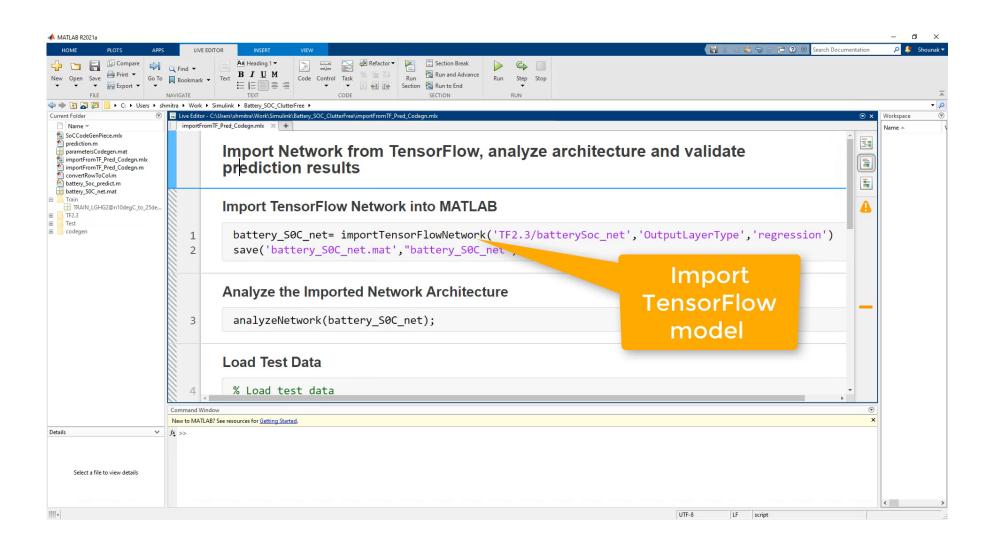
- Step1: Train model in TensorFlow and save the model
- Step2: Import model into MATLAB and analyze architecture and validate the results
- Step3: Include into a Simulink model for desktop simulation
- Step4: Generate CUDA code from imported TensorFlow Model

Response

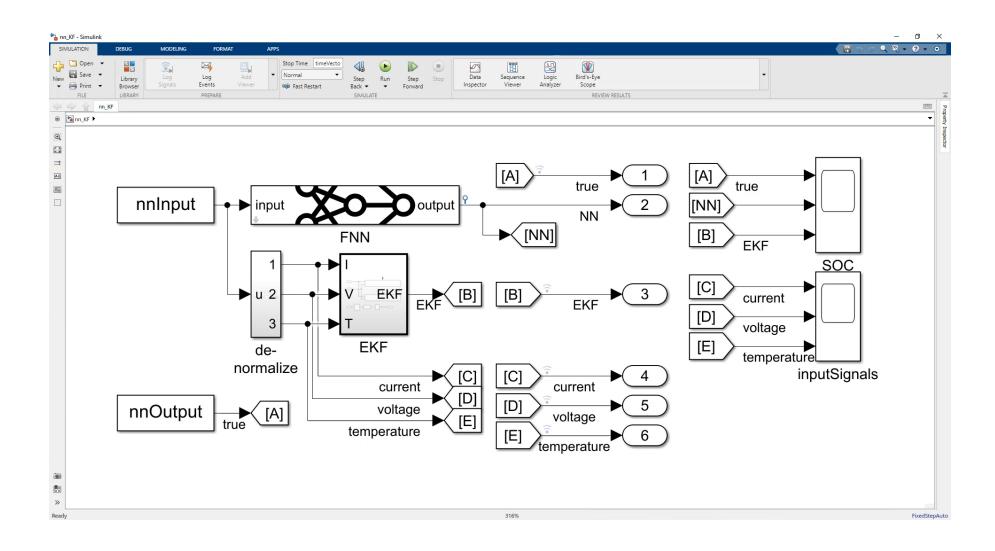
## Step1: Train model in TensorFlow and save the model



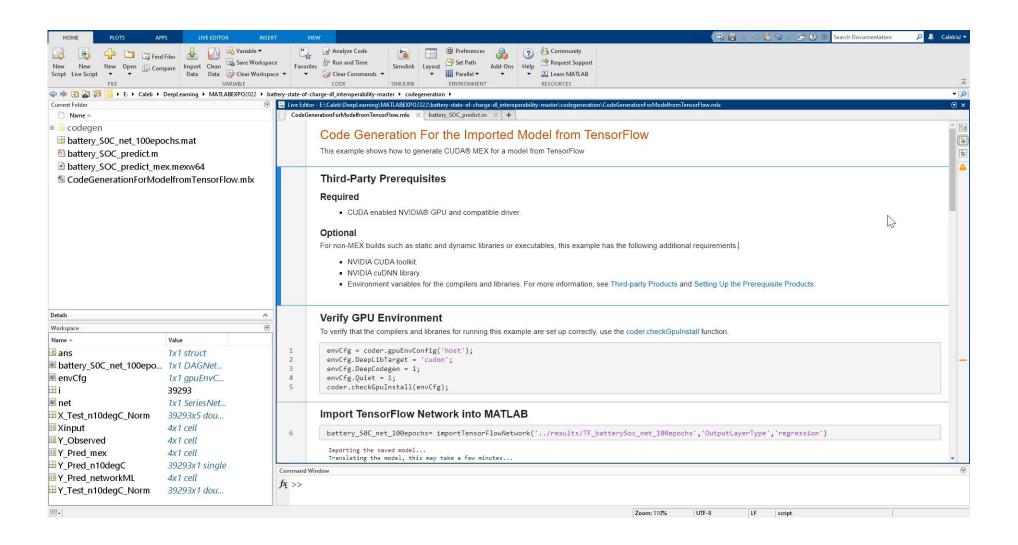
## Step 2: Import and analyze architecture, and validate the results



## Step3: Include into a Simulink model for desktop simulation



## Step4: Generate CUDA code from imported TensorFlow Model



## Mitsui Chemicals Deploys Al and Automation Systems with TensorFlow and MATLAB

## Challenge

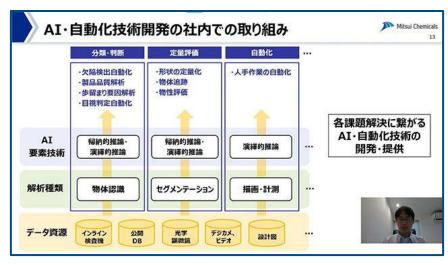
Automate visual inspection of sheet-shaped products and ensure ease of use and maintenance of the deployed model

### **Solution**

Import the trained TensorFlow-Keras model into MATLAB using an importer, create a user interface, and deploy it in the field as an application

## **Key Outcomes**

- Reduced visual inspection time by 80%
- Effectively used models trained in other frameworks
- Deployed application with a user interface that anyone can use



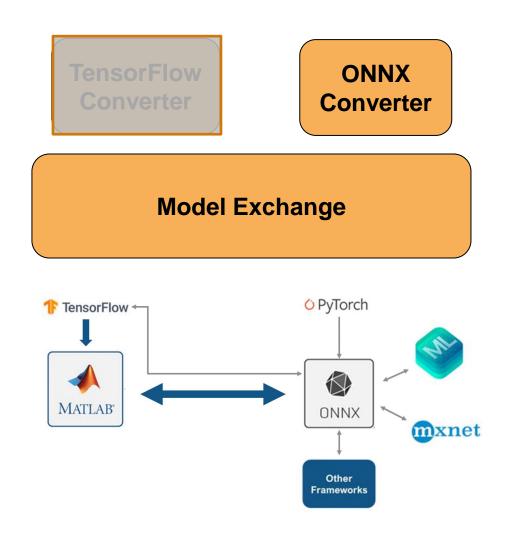
Model development with Python (TensorFlow-Keras) and efficient onsite implementation of models with MATLAB.

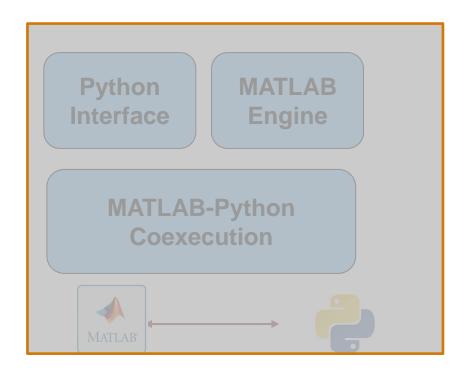
"MATLAB solved our problems on the field implementation and saved development time. That led to highly accurate development."

- Shintaro Maekawa, Mitsui Chemicals, Inc.

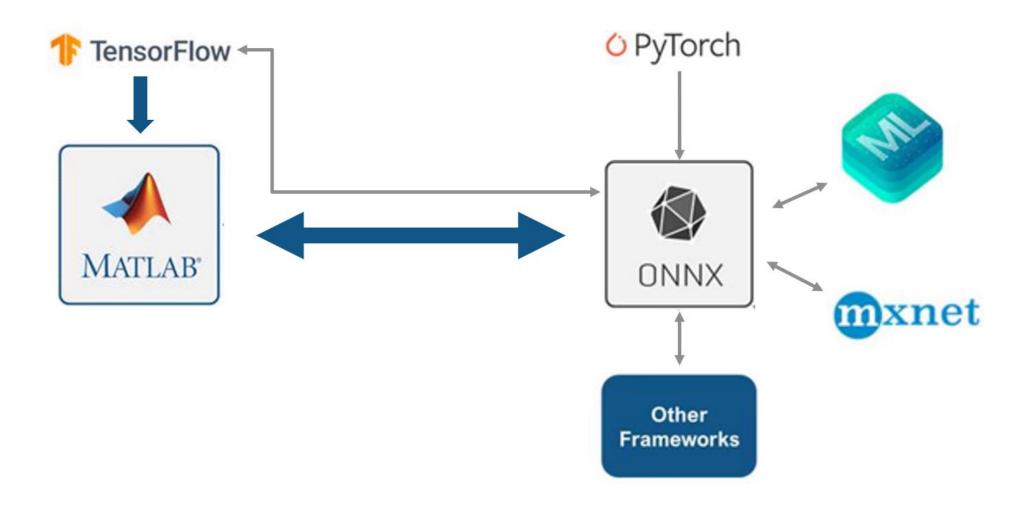
Link to case study

## Ways to Interoperate with TensorFlow and PyTorch

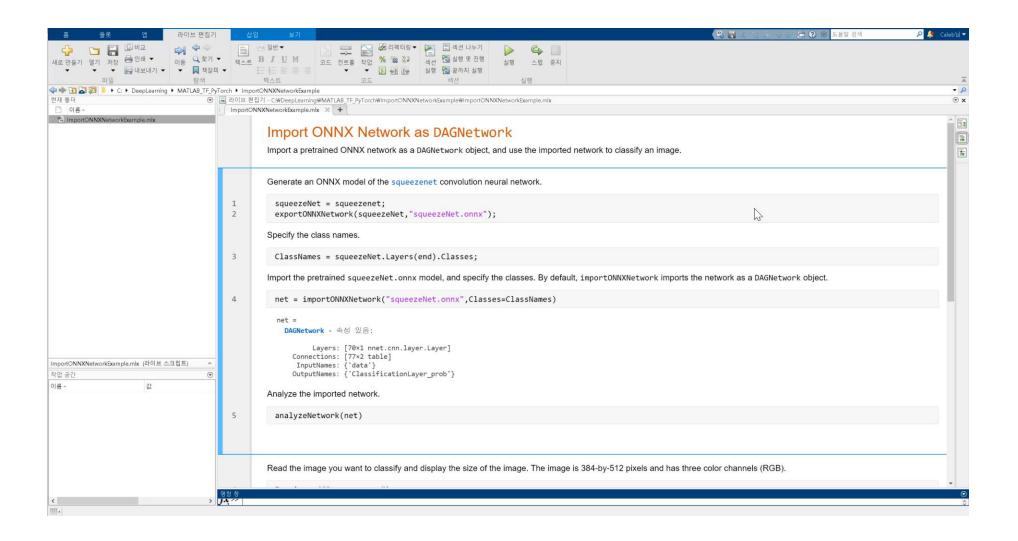




## Ways to Interoperate with TensorFlow and PyTorch

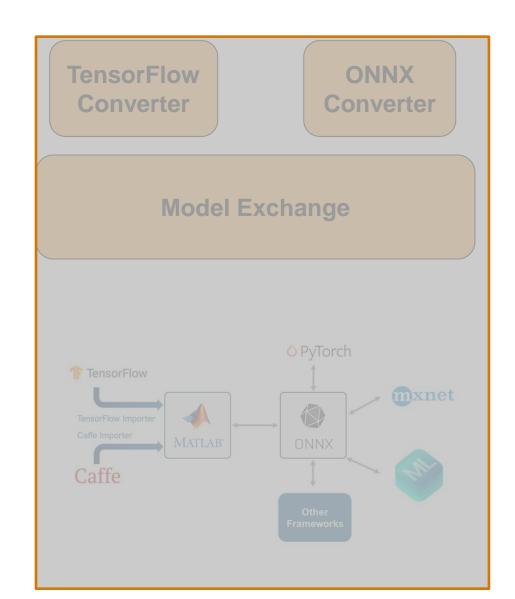


## **ONNX Exporting and Importing**



# Use MATLAB and Python in model training

## Ways to Interoperate with TensorFlow and PyTorch



Python Interface

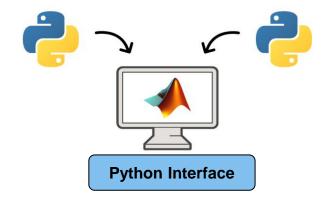
MATLAB Engine

MATLAB-Python Coexecution



## Why Co-execution?

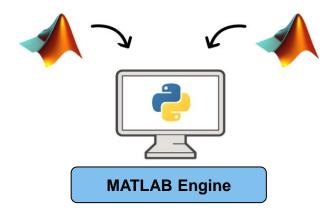
### Calling Python from MATLAB



Already working in MATLAB, and:

- Want to reuse existing Python code
- Need functionality that is only available in Python

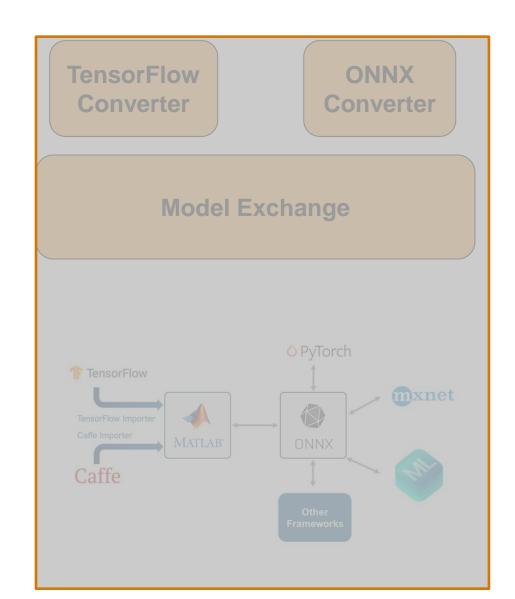
### Calling MATLAB from Python



Already working in Python, and:

- Want to reuse existing MATLAB code
- Need functionality available in MATLAB
- Want to collaborate with MATLAB users

## Ways to Interoperate with TensorFlow and PyTorch



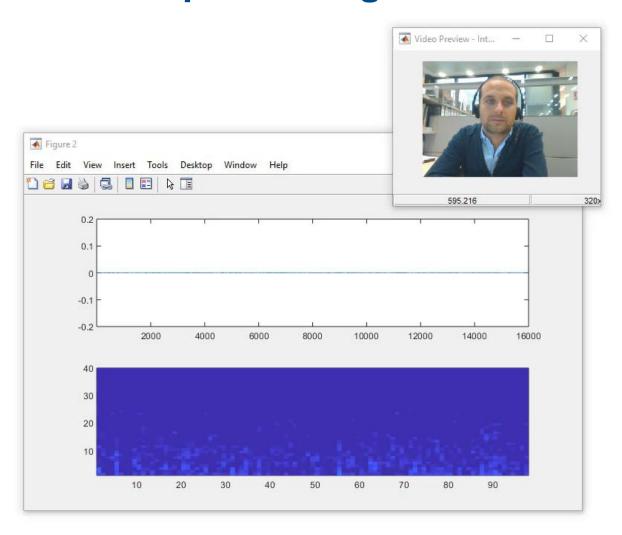
Python Interface

MATLAB Engine

MATLAB-Python Coexecution

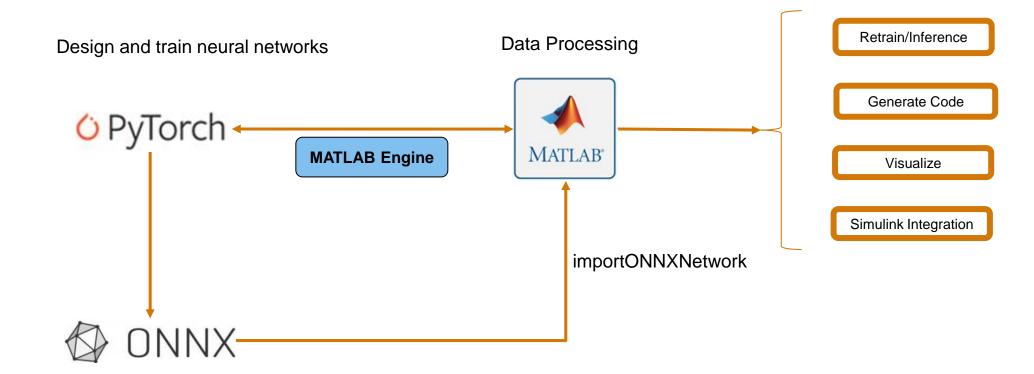


# Example: Speech Command Recognition – Train in PyTorch, call data processing in MATLAB

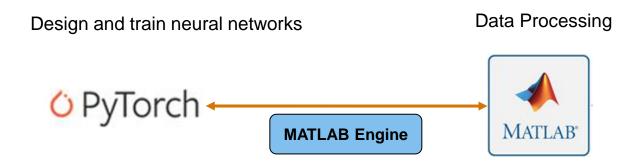


- Step 1: Setting up MATLAB engine in Python
- Step 2: Setting up functions to call MATLAB from PyTorch
- Step 3: Preparing data and designing network in PyTorch
- Step 4: Calling MATLAB preprocessing functions from PyTorch training loop
- Step 5: Exporting trained network to ONNX and import ONNX model in MATLAB

# **Example Workflow**



# **Example Workflow**



## **Step 1: Setting up MATLAB engine in Python**

### **Install the Engine API**

At the MATLAB command prompt —

```
cd (fullfile(matlabroot, 'extern', 'engines', 'python'))
system('python setup.py install')
```

Calling MATLAB from Python

## Start MATLAB Engine

Start Python, import the module, and start the MATLAB engine:

```
import matlab.engine
eng = matlab.engine.start_matlab()
```

## MATLAB Engine

## **Step 2: Setting up functions to call MATLAB from PyTorch**

```
import torch
from torch.utils.data import Dataset, DataLoader
import torch.nn as nn
import torch.onnx
import time
import os
cuda = torch.device('cuda')
# start a MATLAB engine
import matlab.engine
MLEngine = matlab.engine.start matlab()
miniBatchSize = 128.0
# Prepare training dataset
class TrainData(Dataset):
    def init (self):
        # Create persistent training dataset in MATLAB
       MLEngine.setupDatasets(miniBatchSize) =
        # Set the dataset Length to the number of minibatches
        # in the training dataset
        self.len = int(MLEngine.getNumIterationsPerEpoch())
    def getitem (self, index):
        # Call MATLAB to get a minibatch of features + labels
        minibatch = MLEngine.extractTrainingFeatures()
        x = torch.FloatTensor(minibatch.get('features'))
        y = torch.FloatTensor(minibatch.get('labels'))
        return x, y
```

```
function [ads, batchSize] = setupDatasets(varargin)

persistent adsTrain miniBatchSize
if isempty(adsTrain)
    adsTrain = audioDatastore(datafolder, ...
        'IncludeSubfolders', true, ...
        'LabelSource', 'foldernames');

if nargin == 0
        miniBatchSize = 128;
else
        miniBatchSize = varargin{1};
end
end

ads = adsTrain;
batchSize = miniBatchSize;
```

## Step 2: Setting up functions to call MATLAB from PyTorch

MATLAB Engine

```
import torch
from torch.utils.data import Dataset, DataLoader
import torch.nn as nn
import torch.onnx
import time
import os
cuda = torch.device('cuda')
# start a MATLAB engine
import matlab.engine
MLEngine = matlab.engine.start_matlab()
miniBatchSize = 128.0
# Prepare training dataset
class TrainData(Dataset):
    def init (self):
        # Create persistent training dataset in MATLAB
       MLEngine.setupDatasets(miniBatchSize)
        # Set the dataset length to the number of minibatches
        # in the training dataset
        self.len = int(MLEngine.getNumIterationsPerEpoch())
    def getitem (self, index):
        # Call MATLAB to get a minibatch of features + labels
        minibatch = MLEngine.extractTrainingFeatures()
        x = torch.FloatTensor(minibatch.get('features'))
        y = torch.FloatTensor(minibatch.get('labels'))
        return x, y
```

## Step 3: Preparing data and designing network in PyTorch

Initiate a handle to prepare the data that will be read in the training loop

```
MATLAB
Engine
```

```
trainDataset = TrainData()
trainLoader = DataLoader(dataset=trainDataset, batch_size=1)
```

Similar to Datastores in MATLAB

#### Design the neural network architecture

```
class CNN(nn.Module):
    # Contructor
    def init (self, out 1=NumF):
        super(CNN, self). init ()
        self.cnn1 = nn.Conv2d(in channels=1, out channels=out 1, kernel size=3, padding=1)
        self.batch1 = nn.BatchNorm2d(out 1)
        self.relu1 = nn.ReLU()
        self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.cnn2 = nn.Conv2d(in channels=out 1, out channels=2*out 1, kernel size=3, padding=1)
        self.batch2 = nn.BatchNorm2d(2*out 1)
        self.relu2 = nn.ReLU()
        self.maxpool2 = nn.MaxPool2d(kernel size=3, stride=2, padding=1)
        self.cnn3 = nn.Conv2d(in_channels=2*out_1, out_channels=4 * out_1, kernel_size=3, padding=1)
        self.batch3 = nn.BatchNorm2d(4 * out 1)
        self.relu3 = nn.ReLU()
        self.maxpool3 = nn.MaxPool2d(kernel size=3, stride=2, padding=1)
        self.cnn4 = nn.Conv2d(in_channels=4 * out 1, out_channels=4 * out 1, kernel_size=3, padding=1)
        self.batch4 = nn.BatchNorm2d(4 * out 1)
        self.relu4 = nn.ReLU()
        self.cnn5 = nn.Conv2d(in channels=4 * out 1, out channels=4 * out 1, kernel size=3, padding=1)
        self.batch5 = nn.BatchNorm2d(4 * out 1)
        self.relu5 = nn.ReLU()
```

# Step 4: Calling MATLAB preprocessing functions from PyTorch training loop

MATLAB Engine

```
Custom training loop in PyTorch
```

```
for epoch in range(n_epochs):
    if epoch == 20:
        for g in optimizer.param_groups:
            g['lr'] = 3e-5

count = 0
    for batch in trainLoader:
        count += 1
        print('Epoch ', epoch+1, ' Iteration', count, ' of ', trainDataset.len)
        x = batch[0].cuda()
        y = batch[1].cuda()
        optimizer.zero_grad()
        z = model(torch.squeeze(x.float(), 0))
        loss = criterion(z, torch.squeeze(y).long())
        loss.backward()
        optimizer.step()
```

```
miniBatchSize = 128.0
                                                                                 function [ads, batchSize] = setupDatasets(varargin)
# Prepare training dataset
                                                                                 persistent adsTrain miniBatchSize
class TrainData(Dataset):
                                                                                 if isempty(adsTrain)
   def __init__(self):
                                                                                     adsTrain = audioDatastore(datafolder, ...
       # Create persistent training dataset in MATLAB
                                                                                          'IncludeSubfolders', true, ...
       MLEngine.setupDatasets(miniBatchSize)
                                                                                         'LabelSource', 'foldernames');
       # Set the dataset length to the number of minibatches
       # in the training dataset
                                                                                     if nargin == 0
       self.len = int(MLEngine.getNumIterationsPerEpoch())
                                                                                         miniBatchSize = 128;
   def getitem (self, index):
                                                                                         miniBatchSize = varargin{1};
       # Call MATLAB to get a minibatch of features + labels
       minibatch = MLEngine.extractTrainingFeatures()
                                                                                      end
       x = torch.FloatTensor(minibatch.get('features'))
       y = torch.FloatTensor(minibatch.get('labels'))
       return x, y
                                                                                 ads = adsTrain:
                                                                                 batchSize = miniBatchSize;
```

## Step 5: Exporting trained network to ONNX and import ONNX model in MATLAB

**MATLAB Engine** 

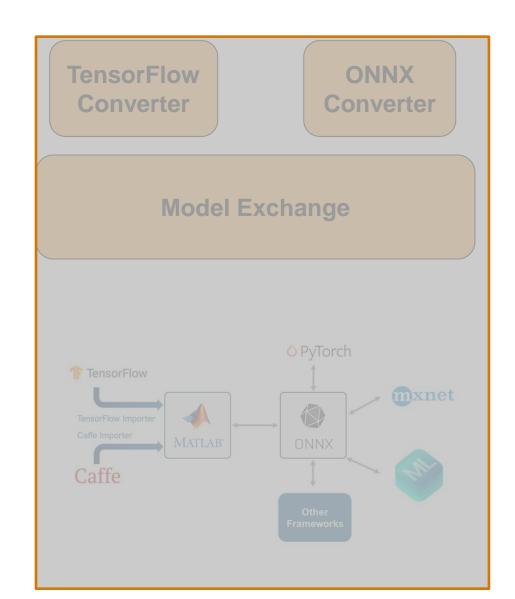
In PyTorch, export model to onnx

```
# Export the trained model to ONXX format
torch.onnx.export (model,
                  torch.empty(1, 98, 50).cuda(),
                  "cmdRecognitionPyTorch.onnx",
                  export params=True,
                  opset version=9,
                  do constant folding=True,
                  output names=['output'])
```

Import the model to MATLAB with importONNXNetwork

```
>> cmdRecognitionONNX = importONNXNetwork('cmdRecognition.onnx','OutputLayerType','classification')
Warning: Adding a Softmax layer to the imported network. The ONNX network does not include
a Softmax, which is required for classification networks.
> In nnet.internal.cnn.onnx.translateONNX>insertSoftmaxBeforeClassificationLayer (line 351)
In nnet.internal.cnn.onnx.translateONNX>postprocessImportedLayers (line 291)
In nnet.internal.cnn.onnx.translateONNX (line 218)
In nnet.internal.cnn.onnx.importONNXNetwork (line 11)
In importONNXNetwork (line 52)
```

## Ways to Interoperate with TensorFlow and PyTorch



Python Interface

MATLAB Engine

MATLAB-Python Coexecution



## Using TensorFlow Network Design Inside the MATLAB Script

#### Calling Python from MATLAB

In this example, you invoke TensorFlow training from MATLAB. The training loop is in MATLAB. The neural network model and the gradient/loss computations happen in TensorFlow.

#### **Setup Training Datastore**

Set up a tranining datastore with the desired minibatch size. This is the same function used in the original demo version (call MATLAB from Python).

```
miniBatchSize = 128;
[trainingDatastore, validationDatastore] = setupDatasets(miniBatchSize);
numIterationPerEpoch = numel(trainingDatastore.Files)/miniBatchSize;
```

#### **Compute Validation Data**

Get the validation data (similar to original example).

```
validationData = extractValidationFeatures;
validationData.features = permute(validationData.features, [1 3 4 2]);
```

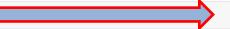
Instantiate the deep learning model. This is a class defined in Python. You will call methods on this object in the training loop.

```
model = py.SpeechCommandRecognition.SpeechCommandRecognition();
```

## Using TensorFlow Network Design Inside the MATLAB Script

Instantiate the deep learning model. This is a class defined in Python. You will call methods on this object in the training loop.

```
model = py.SpeechCommandRecognition.SpeechCommandRecognition();
```



#### **Training Loop**

In the training loop, call the method forward to update the weights.

```
numEpochs = 1;
for epoch = 1:numEpochs
    model.initializeAcc;
    for i = 1:numIterationPerEpoch
        if mod(i,10) == 1
            fprintf('Epoch %d - Iteration %d of %d\n',epoch,i,numIterationPerEpoch);
        end
        values = extractTrainingFeatures;
        features = permute(values.features, [1 3 4 2]);
        labels = values.labels.';
        model.forward(features, labels, pyargs('training', true));
    end
    model.printAcc;
    z = model.forward(validationData.features, 0);
    z = double(z);
    [\sim,m] = \max(z,[],2);
    acc = sum((validationData.labels == (m-1)))/numel(m);
    fprintf('Validation accuracy: %f percent\n',100 * acc);
end
```

```
ass SpeechCommandRecognition(tf.Module):
def make_model(self):
     x = layers.MaxPool2D(pool_size=3, strides=2, padding='same')(x)
     x = layers.Conv2D(2 + 12, 3, strides=1, padding='same')(x)
     x = lavers.BatchNormalization(axis=3)(x)
     x = layers.MaxPool2D(pool_size=3, strides=2, padding='same')(x)
     x = layers.Conv2D(4 * 12, 3, strides=1, padding='same')(x)
     x = layers.BatchNormalization(axis=3)(x)
     x = layers.BatchNormalization(axis=3)(x)
     x = layers.MaxPool2D(pool_size=(13, 1), strides=(1, 1), padding='valid')(x)
```

## Using TensorFlow Network Design Inside the MATLAB Script

Instantiate the deep learning model. This is a class defined in Python. You will call methods on this object in the training loop.

```
model = py.SpeechCommandRecognition.SpeechCommandRecognition();
```

#### **Training Loop**

In the training loop, call the method forward to update the weights.

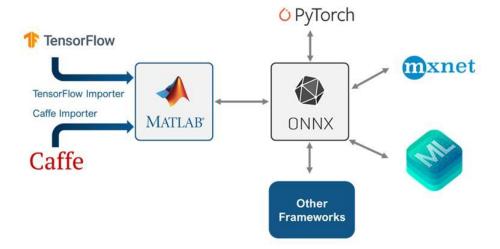
```
numEpochs = 1;
for epoch = 1:numEpochs
    model.initializeAcc;
    for i = 1:numIterationPerEpoch
        if mod(i,10) == 1
            fprintf('Epoch %d - Iteration %d of %d\n',epoch,i,numIterationPerEpoch);
        end
        values = extractTrainingFeatures;
        features = permute(values.features, [1 3 4 2]);
       labels = values.labels.';
       model.forward(features, labels, pyargs('training', true));
    model.printAcc;
   z = model.forward(validationData.features, 0);
   z = double(z);
    [\sim,m] = \max(z,[],2);
    acc = sum((validationData.labels == (m-1)))/numel(m);
    fprintf('Validation accuracy: %f percent\n',100 * acc);
end
```

```
self.epoch_loss_avg = tf.keras.metrics.Mean()
    self.epoch_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()
    self.model = self.make_model()
   Ir = tf.Variable(.0003, trainable=False, dtype=tf.float32)
def forward(self, x, y, training=False):
    x = np.expand_dims(x, 3)
           grads = tape.gradient(loss_value, self.model.trainable_variables)
           self.optimizer.apply_gradients(zip(grads, self.model.trainable_variables))
           self.epoch accuracy(v, self.model(x))
```

## Summary: MATLAB with TensorFlow & PyTorch

#### **Model Exchange**

Used when working mainly with Deep Learning models (R2017b or later)



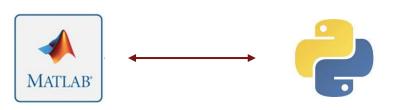
### Best for Al model evolution, codegen, and system integration

- Import model from third-party framework to Deep Learning Toolbox
- Use MATLAB's data labeling/ processing/ code generation and compiler pipelines
- Integrate model into Simulink using Deep Learning Toolbox blocks or MATLAB Function block
- Export modified model to third-party framework if needed

#### Co-execution

Used when

- working with Deep Learning models or other Matlab/ Python code
- pretrained models cannot be directly imported into MATLAB



#### Best for encapsulation and reuse of Python code in MATLAB/ Simulink

- Use existing data pipelines in Python and train and perform experiment management in MATLAB using apps
- Use TensorFlow/ PyTorch for training with MATLAB's data labeling/ processing pipelines
- Create Python API in separate MATLAB function in Simulink
- Use a MATLAB Function block in Simulink to call Python subroutines and models

# MATLAB EXPO

# Thank you



© 2022 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.