
효율적인모델기반설계를위한최적화코드생성
김학범, MathWorks Korea

Alenia Aermacchi develops

autopilot software for DO-

178B level A certification

ITK engineering develops IEC

62304 compliant controller for

dental drill motor with MBD

Stem accelerates development

of power electronics control

system with MBD

IDNEO develops embedded

computer vision and

machine learning algorithms

for interpreting blood type

results

The new XC 90 is build on

SPA platform utilizing

Model-Based Design and

AUTOSAR in Volvo

Code Generation Utilized in Various Applications and Industries

1

https://www.mathworks.com/company/user_stories/alenia-aermacchi-develops-autopilot-software-for-do-178b-level-a-certification.html
https://www.mathworks.com/company/user_stories/itk-engineering-develops-iec-62304compliant-controller-for-dental-drill-motor-with-model-based-design.html
https://www.mathworks.com/company/user_stories/stem-accelerates-development-of-power-electronics-control-systems-with-model-based-design.html
https://www.mathworks.com/company/user_stories/idneo-develops-embedded-computer-vision-and-machine-learning-algorithms-for-interpreting-blood-type-results.html

Test &

Verification

Modeling &

Simulation

Code

Generation

• Accelerate development process

• Reduce translation error

• Enable rapid iterative workflows

2

Code Generation Connects Model-Based Design Workflows

Design an Embedded Controller

3

+ Plant or
Environment

Embedded
System

Controller or
Application

-

How to optimize
embedded software?

4

▪ Model level & Algorithm level analysis

▪ Application-aware optimizations (modeling pattern)

Model Analysis

▪ Implementation level analysis

▪ Target-aware optimizations (resources)

Code Generation

Approach to Code Efficiency with Model-Based Design

Demo: Embedded Coder Quick Start

5

6

Lines of code

Usage of

global variables

Estimated stack size

/Cyclomatic complexity

Static Code Metrics Report

Minimize global

accesses, Line Of Code

ROM

Efficiency

Execution

Speed

RAM

Efficiency

RAM, ROM and Execution Performance

Data copy

reduction

Buffer reuse

ROM

Efficiency

7

ROM

Efficiency

Execution

Speed

RAM

Efficiency

RAM, ROM and Execution Performance

ROM

Efficiency

8

Challenge: Maintaining Large and Complex Systems ROM

Efficiency

▪ Size and complexity of systems are

increasing

– “Typical ECU contains 2000 function

components that are each developed by a

different person” Automotive customer

▪ ”Enforcement of low complexity”

required for model standards

– ISO 26262-6 “Product Development at the

Software Level”, Table 1

9

Challenge: Maintaining Large and Complex Systems

10

▪ Studies estimate 13-20% of code in large

systems are cloned *

▪ Old fashion modeling patterns appear:

System

constant

Old New

* Source: Roy and Cordy A Survey on Software Clone Detection Research, Sept 2007

Baker. On Finding Duplication and Near-Duplication in Large Software Systems. In Proceedings of the Second Working Conference on Reverse Engineering (WCRE’95), July 1995.

Copied

Subsystems

ROM

Efficiency

Clone Detection

• Find duplicate model content in your
design

• Locate opportunities to optimize with
a library

Refactoring

• Replace exact clones with library
blocks

• Improve reuse and maintainability

With Identified

Clones Highlighted:
Original

model

Refactored Model Clones replaced with

library block

11

Clone Detection & Refactoring ROM

Efficiency

12

DEMO: Detect Clone in Model ROM

Efficiency

Review Generated Code

13

SS3

SS5

Refactoring SS3,5

Before After

ROM

Efficiency

ROM

Efficiency

Library-Based Subsystem Code Generation

▪ System complexity → Unit testing

– Models

– Subsystems

▪ Library-based Subsystem Code Generation

– Lock down function interfaces

– Generate small reusable sub-functions

– Verify usage within a model using SIL/PIL

– SIL/PIL unit test in library with code coverage
Normal

SIL

PIL

Library

C/C++

Code

Generate

14

ROM

Efficiency

Minimize global

Accesses, line of code

RAM

Efficiency

Execution

Speed

ROM

Efficiency
RAM

Efficiency

Data copy

reduction

Buffer reuse

RAM, ROM and Execution Performance

15

RAM

Efficiency

Execution

Speed

ROM

Efficiency
RAM

Efficiency

RAM, ROM and Execution Performance

16

Reuse Local Block Output RAM

Efficiency

Model_B.yModel_B.Add Model_B.Subsystem1

Model_B.Add Model_B.y

3 buffers

2 buffers

Model_B.y 1 buffer

17

RAM

Efficiency

18

▪ Reuse buffers with different sizes and/or shapes (dimensions)

– Different buffers collapse to one, the biggest size is kept

Model_B.subsys Model_B.subsys1 Model_Y.Out1

Model_Y.Out1

Reuse Local Block Output RAM

Efficiency

19

Model.Switch1

Model.Switch2

Reuse signal storage

Reuse Local Block Output RAM

Efficiency

20

▪ Review Code Generation Report

Use only 3 variables for 9 blocks

-. Reduce 6 variables

Reuse Local Block Output RAM

Efficiency

21

Before After

Lines of

Code
33 30

Total Lines 89 78

▪ Review Static Code Metrics Report

Reuse Local Block Output RAM

Efficiency

22

▪ Using Signal Labels to Guide Buffer Reuse

– Case#1: Same variable for the Atomic Subsystem and Saturation block outputs

– Case#2: Same variable for the Atomic Subsystem and Gain block outputs

Reuse buffer case#2

Reuse buffer case#1

Reuse Buffer Using Signal Labels RAM

Efficiency

23

▪ Using Signal Labels to Guide Buffer Reuse

– Same variable for the Atomic Subsystem and Saturation block outputs

Reuse same buffer

Reuse Buffer Using Signal Labels RAM

Efficiency

Subsystem

24

Reduce Code Complexity by Refactoring Subsystem RAM

Efficiency

▪ Review Code Generation Report

Create subsystem function

Reduce Code Complexity by Refactoring Subsystem RAM

Efficiency

25

Before After

Complexity 6 4

Lines of

Code
33 11

Total Lines 78 58

26

Reduce Code Complexity by Refactoring Subsystem RAM

Efficiency

▪ Review Static Code Metrics Report

Optimize Generate Code in Reusable Subsystem

27

RAM

Efficiency

▪ Passing Reusable Subsystem Outputs as Structure Reference

Data Store
Data Copy

Reference

Subsystem

Storage
External

Output

Optimize Generate Code in Reusable Subsystem

28

RAM

Efficiency

▪ Passing Reusable Subsystem Outputs as Individual Argument

Passing data

as argument

Reference

External

Output

• Save buffer storage

• Reduce data copy

• RAM efficiency

• Execution speed

Optimize Generate Code in Reusable Subsystem

29

RAM

Efficiency

Optimize Generate Code in Reusable Subsystem

30

▪ Review Code Generation Report

3 times data copy from

subsystem structure

1 times data passing

using arguments

[Individual argument][Structure reference]

RAM

Efficiency

Optimize Generate Code in Reusable Subsystem

31

▪ Review Static Code Metrics Report

RAM

Efficiency

Global variables: -24bytes

Read/Write: -4 times

[Individual argument][Structure reference]

32

Off

Automatically

checked options

Easy to Configure Options for Optimizing Code RAM

Efficiency

Minimize global

Accesses, line of code

ROM

Efficiency
RAM

Efficiency

Data copy

reduction

Buffer reuse

Execution

Speed

RAM, ROM and Execution Performance

33

ROM

Efficiency
RAM

Efficiency

Execution

Speed

RAM, ROM and Execution Performance

34

Row-Major vs. Column-Major Execution

Speed

▪ Row-Major layout

– Elements of the rows are contiguous

– C and C++ use row-major layout

▪ Column-Major layout

– Elements of the columns are contiguous

– MATLAB® and Fortran use column-major layout

X =

𝑥1 𝑥2 𝑥3
𝑥4 𝑥5 𝑥6
𝑥7 𝑥8 𝑥9

The elements of the array are stored :

𝑥1 𝑥4 𝑥7 𝑥2 𝑥5 𝑥8 𝑥3 𝑥6 𝑥9

X =

𝑥1 𝑥2 𝑥3
𝑥4 𝑥5 𝑥6
𝑥7 𝑥8 𝑥9

The elements of the array are stored :

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9

MATLAB: M =

11 12

21 22

31 32

Column-major

code

generation:

M[] = {11, 21, 31, 12, 22, 32}; M[2] = 31

Row-major

code

generation:

M[] = {11, 12, 21, 22, 31, 32}; M[2] = 21 Row-major

indexing

Column-major

indexing

Row-Major vs. Column-Major Execution

Speed

36

Row-Major vs. Column-Major

37

A =
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23

Address Access Value

0 A[0][0] 𝑎11

1 A[0][1] 𝑎12

2 A[0][2] 𝑎13

3 A[1][0] 𝑎21

4 A[1][1] 𝑎22

5 A[1][2] 𝑎23

[Raw-major order]

Sequentially

data read

𝑎11,𝑎12, 𝑎13,…….

Execution

Speed

Programmed by C

▪ CPUs Process Sequential Data More Efficiently than nonsequential data

Row-Major vs. Column-Major

38

Address Access Value

0 A[0][0] 𝑎11

1 A[1][0] 𝑎21

2 A[0][1] 𝑎12

3 A[1][1] 𝑎22

4 A[0][2] 𝑎13

5 A[1][2] 𝑎23

[Column major order]

Need data indexing!!

𝑎11,𝑎12, 𝑎13,…….
Memory access times increase!!

Execution

Speed

Programmed by C

A =
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23

▪ CPUs Process Sequential Data More Efficiently than nonsequential data

Column-major layout Row-major layout

P =

1 2

3 4

5 6

Row-Major vs. Column-Major Execution

Speed

39

Row-major layout

P =

1 2

3 4

5 6

Multi-Dimensional layout

Row-Major and Multi-Dimension Indexing Execution

Speed

40

Generating Row-Major Code

41

Execution

Speed

Code Execution Profiling with SIL and PIL Execution

Speed

▪ Produce execution time metric for tasks and functions in the generated code

– Measure execution time, self time, CPU utilization and number of calls

– Identify tasks that require the most execution time

– In these tasks, investigate code sections that require the most execution time

42

Code Execution Profiling with SIL and PIL

▪ How to Generate Execution-Time Metrics in SIL/PIL Manager

Execution

Speed

43

Improving Code and Model Performance Execution

Speed

44

C

Improving Code and Model Performance Execution

Speed

45

Key Takeaway

46

Execution

Speed

RAM

Efficiency

ROM

Efficiency

▪ Improving Modeling Patterns for Efficiency

– Clone detection, memory efficiency

▪ RAM and Data Copy Reduction

– Buffer reuse, reduction data copy

▪ Execution Speed

– Row-major and column-major

– Code execution profiling

