Application of MATLAB/Simulink for 1 Dimensional Multi-physics Analysis

Contents

I. LS group & LS Electric

II. Gas Insulated Switchgear

III. 1D Analysis for Gas Insulated Switchgear

IV. Results and Discussions

2020. 6. 18

LS Electric, Electrotechnology R&D Center

HyunWoo Joo

LS Group is a conglomerate based in South Korea. It spun off from LG Group in 2003. LS is leading in the field of electric power, automation, machinery, materials and energy.

LSELECTRIC SMART ENERGY SOLUTION

Business Overview

GUTURING SMART ENERGY

- Power Solution | Systems | HV S/S System

LS ELECTRIC manufacture the PDPS which constantly monitors the functions and performances of major power facilities including GIS and HV TR of HV power systems.

Management S/W Platform	Gas Insulated Switchgear	HV Power Transformer	MV Switchgear (MCSG)
SCADA system (PQMS, PDPS, SAS, ECMS)	• Up to 420kV / 63kA / 6300A	• Up to 550kV 800MVA	• Up to 36kV / 50kA / 5000A
 Integrated on-line diagnosis system Substation Automation Sys. 	0 IEC 6227 1-200	 Special purpose : Scott connection, Electric furnace, Shunt reactor, HVDC converter transformer 	• IEC 6227 1-200, ANSI/IEEE C37
► DAU			

Gas insulated switchgear

A compact, multicomponent device, enclosed in a grounded metallic case in which the basic insulating medium is SF_6 gas and which typically includes buses, switches, circuit breakers, and other related devices.

One of the basic functions of GIS is protection, which is interruption of short-circuit and overload fault currents while maintaining service to unaffected circuits. GIS also provides isolation of circuits from power supplies

Compact design

- Space saving compact design minimize footprint and gas amount

- Easy handling and maintenance by Modular Design

High Reliability & Safety

- Rigorously verify the reliability of product using testing facilities in PT&T (Test Lab.)

- Improves reliability by design verification with advanced analytical CAE Tools

Manufacturing System

- Clean system manages prevention of Particle entrapment and control quality

- Flexible manufacturing system enables short delivery and different needs response

Fault → Fault Detecting → Opening Contact → Eliminating Arc → Isolation of Circuit → Prevent Accidents

Function of GIS

LSELECTRIC **GIS Product Line-up** 420kV 245kV 362kV 145kV 170kV 25.8/36kV 72.5kV LS LS LS LS LS LS LS 170 245 362 420 72.5 145 Rated voltage [kV] 25.8/36 1250~4000 ~3150 4000~6300 4000 Rated Current [A] -3150 2000 ~3150 50 50/63 40/50 50 Rated Breaking Current [kA] ~40 20/31.5 40 130 130 130/164 125 Rated Making Current [kA] ~100 50/79 100/104 325 460 520 650 Power Frequency Voltage [kV] 70 140 275 750 1175 1425 LIWL [kV] ~170 325 650 1050

Project Overview

- SF6 Gas
- Conventional design process
- Test experience \rightarrow easy to improve

- Eco-friendly gas
- New design concept & process
- Difficult to estimate performance
- > Need for concept study in the beginning stage of design
- > Optimal design between mechanism and chambers in GIS
- Reduction of trial & error and calculation time by 2D/3D analysis

Overall 1D Analysis Model

<Dual Motion>

Mechanism Model

<CAM>

Dual Motion & Chamber Model

- Valves & ODP

<Relief Valve>

<ODP Block>

No Load Simulation (Stroke & Pressure)

No Load Simulation Results

Comparisons with experimental results

Expansion and Compression Pressure [bar]

Stroke [mm]

• 1D Results (Strokes, Temperature & Pressures)

Check Valve Stroke [mm]

Expansion and Compression Volume[mm3]

Expansion and Compression Density[kg/m3]

Expansion and Compression Temperature[K]

Expansion and Compression Mass[kg]

Sub and main nozzle Cross-Section Area(mm²]

Arc Extinction (Load Analysis)

Fault Current → Opening Contact → Compression Chamber → Expansion Chamber → Arc Analysis & Gas Properties → Pin & Tulip (Cooling Chamber) → Tank

LSELECTRIC

Arc Modeling

<Arc Extinction>

Items Definition Arc Plasma Thermodynamic quantities of Arc Plasma Arc Model Arc voltage and Arc Energy Amount of energy released by radiation **Radiation Model** and absorbed by nozzle material Ablation Model Ablated mass distribution Arc Heating Amount of energy transferred to each Coefficient chamber Amount of energy removed **Cooling Model** from cooling and dissociation **Electric Current Model** Electrical current for three phase

Load Simulation Results

< Element Block >

Sequence	Arcing Time	Current (Duty)
Cal	10ms	20%
O1	12.7ms	90%
O2	11.6ms	90%
O3	10.4ms	100%
O4	22.9ms	90%
O5	15.9ms	90%
O6	19.9ms	90%

< Change of Nozzle Diameter with successive test>

< O3 Pressure>

< Test Input current>

1D Simulation for GIS Products

Conclusion

LSELECTRIC

- Need for 3D model and Time-consuming calculation time
- Technical difficulty in coupled real-time simulation between dynamics and arc simulation

Calculation time comparison for 100 case Models

Future Plan

LSELECTRIC

Excel based

Simulink Compiler

Thank you for your attention

