AUTOMATION IN MODEL SHARING AREA FOR ENGINE ECU PROJECTS
Model Sharing Automation

Problem Statement

➢ Model based development approach is widely used across Automotive OEMs and suppliers to exchange software modules. In Bosch we receive SIMULINK models from OEM and need to generate code and validate software against the OEM models.

➢ Challenges during Model Sharing
 ➢ Adaptation of the Models for Code generation
 ➢ Validation of the generated code against the OEM Model

➢ Our Automation tool chain based on MATLAB and Jenkins will address above problems to perform the code generation and validation in an efficient way
“Software Sharing” is the notion that is typically being used to describe several business models by which OEM’s, automotive suppliers or software engineering companies request or allow the use of software modules. (Source: C/IPL)

Base Model – Code sharing
- **Characteristics**
 - SW sharing – base model
 - OEM delivers SW in a RB system
 - Integration done by RB
 - Typically based on RB architecture

CommDev – Model Sharing
- **Characteristics**
 - SW sharing – CommDev
 - OEM delivers Spec/Models
 - Functional responsibility at OEM side
 - Adapt different name spaces by CIL

The **OEM** focuses on **Physical Model and Simulation**

A model is delivered

The **supplier** is in charge of the **Industrialisation** of the generated code based on the model

OEM Motivation
Model Sharing Automation

OEM Inputs

- Simulink Model (*.mdl or *.slx)
- Calibration file (*.m) – Calibration information
- Data Dictionary (*.xls/*.xlsx or *.xml or *.m)
 - Interface Name
 - Data Type
 - Range
 - Resolution
 - Unit
 - Dimension
Model Sharing Automation

Model Setup

- Automation tool to generate code and test cases
- Developed using m-Scripts (MATLAB)
- Simulink and Bosch AddOns used in the background
- REACTIS is used to generate Test cases
- Configured to Run on specific Jenkins machines (With MATLAB installation)
- Code generation of multiple specs supported in parallel
- Multiple Jobs can be triggered on Jenkins machine
Model Sharing Automation

Summary of Model Setup steps

- Creation of Codegen and Test model with proper subsystem structure
- Data Dictionary and Library management (CWO/SLDD, Library replacements)
- Code generation and Post processing (MASST, Add Info to c and Interfaces files)
- Documentation Generation (Pictures, Docu Support, Web view)
- Test Model & Test Case (REACTIS) creation
- Log Creation (html)
Model Sharing Automation
Back-2-back validation workflow

- Automations achieved
 - Execution of signal builder test cases to generate cumulative model coverage report
 - Export of signal builder test cases and calibration
 - Invocation of DLL generation from MATLAB
 - Import of Test cases and calibrations to TPT
 - Execution of TPT test case to generate report and code coverage

![B2B GUI](image)

![Diagram](image)
Model Sharing Automation

Tomorrow’s Process
Demo, Q&A?
Model Sharing Automation
Cloud Words