MATLAB EXPO 2019

Pruebas HIL en electrónica de potencia mediante la conversión de Simscape a HDL

Luis López
Topics to be Covered

- Motivation for real-time with power electronics

- Capturing power electronics switching events utilizing FPGAs

- How to create a power electronics real-time simulation
 - Demo – Solar inverter
 - Automatically converting models for deployment to FPGAs (New feature 2018b)
 - How to convert circuit model to FPGA code (HDL)
 - Perform all tasks from a single environment: Simulink
 - Biggest selling point of this workflow
What is Our Goal?

- Primary goal is to design power electronics hardware and controllers

Controller

Hardware (Plant)
What is Our Goal?

- Primary goal is to design power electronics hardware and controllers
 - Hardware in the loop (HIL) testing can improve this process
What is Hardware in the Loop (HIL) Testing

- HIL replaces the power electronics hardware with a virtual simulation
What is Hardware in the Loop (HIL) Testing

- HIL replaces the power electronics hardware with a virtual simulation
 - Controller can operate as if in the real system
Advantages of Hardware in the Loop (HIL) Testing

- Can replace prototypes or production hardware with a real-time system
- Easier to automate testing and test fault conditions
- Safer than most power electronics hardware
- Start many design/test tasks earlier
Why are FPGAs Important for Real-time

- Certain issues make running a model real-time challenging
 - Minimum time step
 - Model complexity
 - Specialized solvers
Why is are FPGAs Important for Real-time

- It is all about time step
 - Thermal – seconds
 - Mechanical – milliseconds
 - Power Systems – sub-milliseconds
 - Power Electronics – microseconds
 - Radar – nanoseconds

- Typical real-time CPU based solutions run in the sub-millisecond range

- FPGA based solutions run in the microsecond range
 - bordering sub-microsecond for specific applications
The Need for Small Time Step Simulations

- High sample rates (small time steps) are required to capture fast transients in systems like power electronics.
Path to FPGA Accelerated Real-time: Simscape

1. Create a model of the system
 - Often called ‘Desktop Simulation’
 - Can combine Simscape with Simulink

2. Convert model to HDL
 - Allows model to run on an FPGA
 - Utilize Simscape to HDL Advisor

3. Program real-time machine with custom bitstream
 - Bitstream is the program on the FPGA
 - Combine with standard Simulink model on a CPU
MathWorks Supports Many Power Electronics Applications
Solar Inverter for Real-time Testing
Solar Inverter for Real-time Testing
Solar Inverter for Real-time Testing
Step 1: Create a Model (Desktop Simulation)
Inverter and Boost Converter Model
Inverter and Boost Converter Model

Need to convert continuous models to discrete models appropriate for an FPGA
Convert to HDL: Simscape HDL Workflow Advisor
New Feature 2018b

- Run ‘sschdladvisor’ on model
Extract State Space Parameters (Linearize the System)

- Simulation must contain all relevant switching states
Simscape HDL Workflow Advisor

- Choose smallest number of solver iterations possible (usually 3-5)
Implementation Model

Replaces Simscape with State-space
Compare Generated Model to Original
Create Custom Bitstream for Real-time FPGA

Bitstream Model
Create Custom Bitstream for Real-time FPGA

State-space Model

Analog Peripheral Scaling
Create Custom Bitstream for Real-time FPGA

Bitstream

Generate by HDL Workflow Advisor on 04-Jan-2019 15:56:21
Combine with Simulink Model

Dashboard Real-time Interface

Bitstream

Irradiance

CPU Based Model

Power

Simulink Model - Solar Panel

MATLAB EXPO 2019
Demo Recording

Filtered Voltages

Unfiltered Currents
FPGA captures the switching transients

Inverter Current (LC Filter)

Boost Current (DC Cap)
Demo Configuration Details

- Controller – C2000

- Real-time System – Speedgoat Baseline-M
 - IO333 06-21 Kintext 7, 325k FPGA card expansion
2018b Capabilities - Kintex 7 325K

- Works specifically for switched linear systems (piecewise linear)
 - Supports multiple domains
 - Can connect to Simulink motor models

- Ideal for 2-6 switching components per converter
 - Can link multiple converters for larger systems

- Typical systems run at 2 to 5 us
 - Simple systems can be faster than 1 us
Conclusions

▪ Real-time greatly improves embedded control design
▪ FPGAs are important for real-time simulation of power electronics
▪ Embedded control design and real-time testing can all be done in the same environment…

Simulink!