APPLICATIONS IN TRAFFIC ACCIDENT RESEARCH TO IMPROVE VEHICLE SAFETY

MATLAB EXPO 2018, Germany

Dipl.-Ing. Florian Spitzhüttl
Institute for Traffic Accident Research at Dresden University of Technology
Structure

1. Necessity of traffic accident research
2. Application assisted accident investigation
3. Data analyses for research on traffic safety
4. Pre-crash simulation to enhance traffic safety
5. Conclusion
Applications in Traffic accident research to improve vehicle safety
Necessity of traffic accident research

Accident research in the 1920s

Early “accident research” in Dresden

Source: Youtube
Applications in Traffic accident research to improve vehicle safety

Necessity of traffic accident research

Accident scenario in Germany

- Car occupants benefit from active and passive safety
- Numbers of accidents & casualties are stagnating since some years
- In 2016 persons:
 - Fatalities 3,206
 - Seriously injured 67,426
 - Slightly injured 329,240

→ In-depth accident studies are absolutely essential to improve vehicle safety
Applications in Traffic accident research to improve vehicle safety

Necessity of traffic accident research

Documentation of real traffic accidents

Accident data analysis

Area of studies
- Automotive engineering
- Transportation engineering
- Medicine

Institute for Traffic Accident Research at Dresden University of Technology

Naturalistic driving study

System assessment

Education

Reconstruction and Simulation
Applications in Traffic accident research to improve vehicle safety

Necessity of traffic accident research

GIDAS – German In-Depth Accident Study, since 1999

General information

Accident sketch

Technical investigation

Medical investigation

≈ 2.000 accidents/year
Applications in Traffic accident research to improve vehicle safety

Necessity of traffic accident research

Criteria

- Only accidents with personal damage

Investigation area

- Hanover
- Dresden

Source: Google Maps & GIDAS

Database

- Accident level: ~33,000 accidents
- Vehicle level: ~60,000 vehicles
- Personal level: ~77,000 persons
- Ø 3,500 single information/accident
Structure

1. Necessity of traffic accident research
2. Application assisted accident investigation
3. Data analyses for research on traffic safety
4. Pre-crash simulation to enhance traffic safety
5. Conclusion
Applications in Traffic accident research to improve vehicle safety
Application assisted accident investigation

Some examples

OpenStreetMap (OSM) for accident sketch
Coding of injuries
Signal processing of measurements
Structure

1. Necessity of traffic accident research
2. Application assisted accident investigation
3. Data analyses for research on traffic safety
4. Pre-crash simulation to enhance traffic safety
5. Conclusion
Applications in Traffic accident research to improve vehicle safety
Data analyses for research on traffic safety

Databases

Access and processing

Source: ESV 2017 – Bakker, Spitzhüttl et al.: “IGLAD - International harmonized in-depth accident data”
Mathematical models – Injury Risk Functions (IRF)

What is it?
Model to describe the probability of the occurrence of a specific event (e.g. to be at least seriously injured) as a function of one or several influencing parameters (e.g. collision speed) for a given population.
→ Substantial tool for the assessment of vehicle safety systems

How is it calculated?
Based on real (accident) data, calculating the maximum likelihood estimation with an underlying logistic distribution

\[p = \frac{1}{1 + e^{-z}} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \ldots + \beta_n x_n)}} \]

\(\beta_0 \ldots \beta_n \) – regression coefficients
\(x_1 \ldots x_n \) – independent variables

Applications in Traffic accident research to improve vehicle safety
Data analyses for research on traffic safety
Applications in Traffic accident research to improve vehicle safety
Data analyses for research on traffic safety

Mathematical models – Injury Risk Functions (IRF)

What is it used for?

Real accident:
\(v_{\text{coll}} = 50 \text{ km/h} \)

Accident with system (e.g. AEB):
\(v_{\text{coll}} = 40 \text{ km/h} \)

\(p_{(\text{slightly injured})} = 26\% \)
\(p_{(\text{seriously injured})} = 62\% \)
\(p_{(\text{fatal})} = 12\% \)

\(p_{(\text{slightly injured})} = 17\% \)
\(p_{(\text{seriously injured})} = 60\% \)
\(p_{(\text{fatal})} = 23\% \)

\(v_{\text{coll}} \) = collision speed in km/h
Applications in Traffic accident research to improve vehicle safety
Data analyses for research on traffic safety

Mathematical models – Injury Risk Functions (IRF)

Multidimensional
Applications in Traffic accident research to improve vehicle safety
Data analyses for research on traffic safety

Calculation of deformation frequencies

- Normalized car dimensions and discretization into voxel
- Accumulation of accident deformations for 1000 passenger car

→ Analyzation of potentially safe places for sensitive and/or dangerous energy storage (e.g. battery or gas)
Structure

1. Necessity of traffic accident research
2. Application assisted accident investigation
3. Data analyses for research on traffic safety
4. Pre-crash simulation to enhance traffic safety
5. Conclusion
Applications in Traffic accident research to improve vehicle safety
Pre-crash simulation to enhance traffic safety

ACEA Safety Model

Sequence of a traffic accident

- t_{crit}: critical event
- t_u: collision unavoidable
- t_0: collision

Phase 1: Normal driving
Phase 2: Incident-Phase
Phase 3: Pre-Crash-Phase
Phase 4: In-Crash-Phase
Phase 5: Post-Crash-Phase

Active safety Integral safety Passive safety Tertiary safety
Applications in Traffic accident research to improve vehicle safety
Pre-crash simulation to enhance traffic safety

VUFO Accident Simulation Toolbox (VAST)

- Sketch
- External data
- Preparation
- Virtual camera images sent back to Simulink

Source: Mathworks.com
Applications in Traffic accident research to improve vehicle safety
Pre-crash simulation to enhance traffic safety

Example accident – Sketch

Accident scene
Applications in Traffic accident research to improve vehicle safety
Pre-crash simulation to enhance traffic safety

Example accident – Simulation

real accident situation

real accident situation with ADAS System
Applications in Traffic accident research to improve vehicle safety
Pre-crash simulation to enhance traffic safety

Evaluation of opponent’s position at specific TTC

* TTC = 400 ms
• TTC = 200 ms
Applications in Traffic accident research to improve vehicle safety
Pre-crash simulation to enhance traffic safety

Point of no return t_u when a collision is unavoidable

Circle of forces / „Kamm’scher Kreis“

(1) - Max. deceleration
(2) - Steering to the left
(3) - Steering to the right
(4) - Max. deceleration + Steering to the left
(5) - Max. deceleration + Steering to the right
(6) - Max. acceleration + Steering to the left
(7) - Max. acceleration + Steering to the right
(8) - Max. acceleration
Applications in Traffic accident research to improve vehicle safety
Pre-crash simulation to enhance traffic safety

Point of no return t_u when a collision is unavoidable

- Criticality as a function of time
 - continuous
 - differentiable
- No knowledge about the exact function
- $f(t_u) = 0$
 - no analytical solution possible
 - approximation by iterative process and variable integration step size

⇒ Efficient 2-step-approximation method
 1) Fixed step size of 1s
 2) Bisection method
Applications in Traffic accident research to improve vehicle safety
Pre-crash simulation to enhance traffic safety

Point of no return t_u when a collision is unavoidable – Generic rear-end collision

$t_u = f(\Delta v, \mu); \ v_{obj} = 40 \text{ km/h}$
$\Delta v = 2 \ldots 100 \text{ km/h}, \ \mu = 0,1 \ldots 1,0$

t_u comparison of simulation and literature
Applications in Traffic accident research to improve vehicle safety
Pre-crash simulation to enhance traffic safety

Naturalistic driving study (NDS) → Incidents and Events
Applications in Traffic accident research to improve vehicle safety
Pre-crash simulation to enhance traffic safety

Naturalistic driving study (NDS)

Real scenario

Recording

- Camera
- Accelerometer
- Rotation rate sensor
- GPS
- Sender and receiver device
- Processor und ring memory

![Naturalistic driving study](image)

![Recording components](image)
Applications in Traffic accident research to improve vehicle safety
Pre-crash simulation to enhance traffic safety

Naturalistic driving study (NDS)

Real scenario

Simulation
Applications in Traffic accident research to improve vehicle safety
Pre-crash simulation to enhance traffic safety

Naturalistic driving study (NDS)

Ground truth labeling with

Automated Driving System Toolbox
Applications in Traffic accident research to improve vehicle safety
Pre-crash simulation to enhance traffic safety

Naturalistic driving study (NDS)
Naturalistic driving study (NDS)

<table>
<thead>
<tr>
<th>Driver</th>
<th>Passenger car</th>
<th>Camping van</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver 1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Large scatter range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Significant difference between passenger car and camping van</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- High accelerations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driver 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Marginal difference between passenger car and camping van</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Experienced driving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driver 3:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Low scatter range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Higher acceleration in passenger car</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applications in Traffic accident research to improve vehicle safety
Pre-crash simulation to enhance traffic safety

Naturalistic driving study (NDS)

2015

Renault Espace:
→ Marital-problems

Suzuki Swift:
→ Divorce

2016

Renault Megane:
→ New relationship

VW Caddy:
→ Responsibility for children

Renault Megane:
→ Crisis in relationship

2017

Renault Laguna:
→ On-Off relationship
Applications in Traffic accident research to improve vehicle safety
Pre-crash simulation to enhance traffic safety

Naturalistic driving study (NDS)

Real driving behavior
Individual sets of driving parameters

Driver models
Extraction of driving profiles

Automated driving
Train ADAS and HAD
AGENDA

1. Necessity of traffic accident research
2. Application assisted accident investigation
3. Data analyses for research on traffic safety
4. Pre-crash simulation to enhance traffic safety
5. Conclusion
Assurance of traffic safety must be a very high society target. Human errors must not lead to fatalities in a modern traffic environment!

In contrast to past trends, recent statistics show a stagnation in the accident numbers.

The development of Highly Automated Driving needs some more efforts to ensure a safe and modern concept of movement.

Therefore it is very important to improve on crucial aspects of
- ensuring functional safety
- study real world scenarios
- progress on perception infrastructure to support vehicle systems.
THANK YOU FOR YOUR ATTENTION!

Florian Spitzhüttl
Data analyses and simulation
Florian.Spitzhuettl@vufo.de
Tel.: +49 351 43 89 89 22