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Introduction

Surface Data Collection
RPM, Torque, Hookload, Pumprate, Pressure,

Flow, etc Real time — typically recorded at 1-10Hz
Often Asynchronous

Real time — technologies exist, but are often cost prohibitive

Latent data — widespread use of mud pulse telemetry (seconds to transmit data with
typical bit rates of up to 1kbps)

Stored data — stored memory tools can record days worth of high frequency data

Downhole Data Collection
RPM, Torque, Weight-on-bit, Pressure, Vibration, etc
UNIVERSITY OF

CALGARY
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Introduction

Source: eaglefordshale.com

Source: newoilrigs.com Source: mudpumps.org
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What is Stick-Slip?

i Surface forque

* Cyclic stopping (sticking) and releasing

(slipping) of the bit and bottom hole assembly
£ during drilling operations

* 3-10 second period (dependent on drillstring

length)

* Visible at surface as a fluctuation in torque
—
Runia et al., 2013 UNIVERSITY OF
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Motivation
Top drive angular velocity, wrp, bit depth = 1714m Top drive angular velocity, wyrp, bit depth = 2506m
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Drillstring Model

i Surface forque 1]

Tarqua {eNm)

7(t,x)
w(1,x)

v

Runia et al., 2013
7
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Drillstring Model
o Wip
* Top drive at surface with polar
moment of inertia Iy and stiff PI 0
controller [x
* Stick-slip can be caused by
* Bit-rock interaction
* Friction along drillstring "tx)
@(t,x)
8 (c) Roman J. Shor | University of Calgary W CAG 4 RC:F
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Drillstring Model

dx <

P(x)

0
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7(t,x)
w(l,x)

Drillstring Model

dx <

@(x)

(55

p(x+dx)

- — -,
L '
N\

N

* Dynamics governed by the torsional wave equation

* where

ar(t, & ow(t,x
or(t ) + JG# -0
ot Ox
ow(t,z) O7(t,x)
J ’ — = S(w,x
ot Oz ()
T —torque J — polar moment of inertia
w — angular velocity G — shear modulus
p — density

(c) Roman J. Shor | University of Calgary
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Drillstring Model

dx <

o(x) * Dynamics governed by the torsional wave equation
or(t, x) Ow(t,z)
5 + JG‘—&E =0
ow(t,x) = Or(t,x)
Jp 5 + e = Slw.x)

* Source term is modeled by Coulomb Friction

S(w,z) = —kipJw(t, xz) — F(w,x)

UNIVERSITY OF
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Coulomb Friction
S A
* Coulomb friction is modeled as an inclusion
i —r
Fw; z) = Fg(zx), W > We, b
l e k,
F(w,x) € [-F.(z), F.(z)], lw| < we, : /
[ ~F
F(w,z) = —F4(x), W < We, S ;
1
. : I >
* with the parameters: il 0]
* F., maximum Coulomb torque, ; :
or alternatively, u, coefficient of friction : 1
* wy, the transition angular velocity ! -v-1'
* ki, the viscous friction coefficient el _: o
12 (c) Roman J. Shor | University of Calgary @ E“AVI-E-ERVRO\F
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Field Example

* Inertia dominated oscillations

* 200 Hz surface data

* 10s min/max/mean downhole data

300 m |-

INC=40°

(c) Roman J. Shor | University of Calgary

DLS

INC=45°

— DLS = 3°/30m

_/DLS = 3°/30m

2700 m

=2 0/ 30m L
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Field Example
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300 m DLS = 3°/30m

,DLS = 3°/30m

1250 m

2700 m

DLS = 2°/30m

Top drive angular velocity, wrp, bit depth = 173%3m
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Field Example
Top drive angular velocity, wrp, bit depth = 1714m
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* Top Drive SpEEd Control: Impedance
1. Stiff speed control E_ e ]
Thp* ttips
2. Tuned PI control ! p—
1o ass JOW Fass
* SoftTorque / SoftSpeed High Pass f
3. Impedance Matching Control =
Wi o ; K T
ZTorque —_\/— Ko+ &t \r# ~3
PI Controller |
Trns | Motor Inertia
1 I Wo
l4tens
Speed Filter
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* Top Drive Speed Control:
* Stiff speed control

* K, =100,
° Ki = SITD
* where,

Ip is the top drive inertia

Stick-slip Mitigation Control

Impedance

=

High Pass

Low Pass

$p = Jp+/ Gpp is pipe impedance, and

\

il v S [

PI Controller

To

Motor Inertia

Wo

l4tens

Speed Filter

UNIVERSITY OF
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Stick-slip Mitigation Control
* Top Drive Speed Control: Impedance
* Tuned PI control 7 e . -
+ Marketed as SoftTorque / SoftSpeed s i
. = High Pass Low Pass
Kp - 45?
oK = (2nf,)IR — - +
" Where, o K+ & O
fc is the frequency (in Hz) of minimal - - ] _ .
reflectivity Pl Controller . )
Trns | Motor Inertia
] ] “o
1Htens
Speed Filter
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Stick-slip Mitigation Control

* Top Drive Speed Control:
* Impedance Matching Control
* Marketed as Ztorque
* Desired top drive speed to match pipe

Impedance

1

[Z]

I f——
THhps

High Pass
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impedance given by
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Stick-slip Mitigation Control
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Evaluating Performance

* Concept of reflectivity

_ 5(5) - (p
R) = ze 74,
where
C(s) = Z)((SS)) = C(s) + Ipgs = Z)mg

p=Jp ’Gpp

UNIVERSITY OF

n () Roman J. Shor | University of Calgary CALGARY
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Top Drive Reflectivity
* Traditional stiff speed controller
* Reflects torsional waves back to the bit
2 2 (c) Roman J. Shor | University of Calgary @EMKERGSRVRC‘,F
22
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Top Drive Reflectivity
* Ideal zero reflection boundary

* Traditional stiff speed controller * Transmits all wave energy into space
 Reflects torsional waves back to the bit and does not reflect it downhole

._/\_.
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Impedance Matching Control
* Impedance Matching
* The drillstring has a characteristic impedance, which can be
calculated Wo
(p = ]p\/p =
To
* A control system may then match the drillpipe impedance by
changing rpm based on sensed pipe torque
u () Roman1.shor | Uversiy o Clgary @ CALGARY
24
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Evaluating Effectivity
1.2 T T
* Stiff speed: reflectivity of 1 at ] -
all frequencies
* SoftTorque: reflectivity E osl |
reduced at tuning frequency &
Q
* Ztorque: improved range of S o6k |
reduced reflectivity. £
O
- ) 3
le_|ted by: . Sosl |
* Tracking performance (high
pass filter).
. 02+ . |
° |nstrumentat|on s Stiff controller
. . s SoftTorque
constraints (low pass filters ZTorque
and delays). 0 : : ' :
Y ) 10 107 102 107" 100 10
Hz
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Data Evaluation
Torque (kNm)
MR Foan TN
Sutaco o H '\ /; ‘\Q/J
seponn § 2 % & s o WOB (KDN) ROP (m/hr)
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Data Evaluation

UNIVERSITY OF

z () Roman J. Shor | University of Calgary CALGARY

27

Conclusions

* Basic torsional model able to replicate different modes of stick slip caused by
side forces

* Ratio between static and kinematic friction key parameter

* Industry controllers tested using model:

* SoftTorque/SoftSpeed reduces stick-slip tendency but may increase severity when the ratio
between static and kinematic friction is below 0.8

* Ztorque with torque measurement removes stick slip
(but might be limited by delays / latency / filtering in practice)

* Reflectivity coefficient good predictor of performance.
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