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모델 기반 설계에서의 ASPICE 준수방안

류성연 프로, MathWorks
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Development of E/E Automotive Systems
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Automotive SPICE® Process Reference Model
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Today’s Agenda

System Engineering Process Group (SYS)

SYS. 1
Requirements Elicitation

SYS. 2
System Requirements 

Analysis

SYS. 3
System Architectural 

Design

SYS. 4
System Integration and 

Integration Verification

SYS. 5
System Verification

Software Engineering Process Group (SWE)

SWE. 1
Software Requirements 

Analysis

SWE. 2
Software Architectural 

Design

SWE. 3
Software Detailed Design

and Unit Construction

SWE. 4
Software Unit Verification

SWE. 5
Software Component Verification

and Integration Verification

SWE. 6
Software Verification
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For E/E Automotive Systems Development… 

▪ Many automotive standards for production

ASPICE
AUTOSAR

ISO26262

Enhance efficiency

through MBD



5https://www.mathworks.com/solutions/electrification/battery-systems.html 

Demo application:

https://www.mathworks.com/solutions/electrification/battery-systems.html
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Requirements Management

System Engineering Process Group (SYS)

SYS. 1
Requirements Elicitation

SYS. 2
System Requirements 

Analysis

SYS. 3
System Architectural 

Design

SYS. 4
System Integration and 

Integration Verification

SYS. 5
System Verification

Software Engineering Process Group (SWE)

SWE. 1
Software Requirements 

Analysis

SWE. 2
Software Architectural 

Design

SWE. 3
Software Detailed Design

and Unit Construction

SWE. 4
Software Unit Verification

SWE. 5
Software Component Verification

and Integration Verification

SWE. 6
Software Verification
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Why Traceability Matters for ASPICE
Digital Thread

▪ Completeness and Consistency are the top challenges

– Completeness: all required functionality is defined

– Consistency: requirements do not conflict

▪ Ensure application is complete, fully tested, and 

meets customer requirements

▪ Understand the impact of requirement changes 

to implementation and test
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Connect the Requirements Toolbox with External Sources and Tools

Import-Export

&

Roundtrips

3rd-party

Plug-Ins

Custom Solutions

supported by

MathWorks Consulting Services

Requirements Toolbox
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Organize, Specify and Customize Requirements 
Requirements Toolbox

Organize

Specify

Customize
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Hazard and Operability (HAZOP)

Functional Safety Requirements from Concept Phase
Simulink Fault Analyzer

Item definition

HAZOP / HARA

Safety goals 
determinations

Functional safety 
requirements (FSR)

Technical safety 
requirements (TSR)

Hazard Analysis & Risk Assessment (HARA)

Safety Goals
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Elicit and Elaborate Requirements through Bi-directional Links

Stakeholder Requirements

System Requirements

Software Requirements

Test Requirements

to architecture

from FSR

to sys req.

to SSR

Stakeholder req.

Sys req.

TSR
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Use Traceability Diagrams and Matrixes to Check for Consistency 

and Completeness

Traceability MatrixTraceability Diagrams



13

Requirements Traceability Report 
Simulink Report Generator

▪ Provides overview of model objects linked 

with requirements

– Traceability to high level requirements

– Required for A-SPICE, CMMI, DO-178B, DO-254, 

IEC 61508, ISO 26262 etc.

– Helps find objects with incorrect, incomplete, 

ambiguous or missing requirements



14

Architecture Design

System Engineering Process Group (SYS)

SYS. 1
Requirements Elicitation

SYS. 2
System Requirements 

Analysis

SYS. 3
System Architectural 

Design

SYS. 4
System Integration and 

Integration Verification

SYS. 5
System Verification

Software Engineering Process Group (SWE)

SWE. 1
Software Requirements 

Analysis

SWE. 2
Software Architectural 

Design

SWE. 3
Software Detailed Design

and Unit Construction

SWE. 4
Software Unit Verification

SWE. 5
Software Component Verification

and Integration Verification

SWE. 6
Software Verification
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Develop Architectural Design Models with System Composer

Requirements

Functional

Logical

Physical

Item definition
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Ensure Consistency with Tool Support for Bidirectional Traceability 

Requirements  Architecture Architecture  Architecture

Requirements Editor Allocation Editor
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Software Architectural Design Models with System Composer

Functional 

Architecture

Logical 

Architecture

Physical 

Architecture

Software 

Architecture

AUTOSAR ASW Composition

• AUTOSAR development with MBD

https://kr.mathworks.com/solutions/automotive/standards/autosar.html
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Analyze System Architecture with Autogenerated Custom Views
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Describe Dynamic Behavior using Sequence Diagram

▪ Describe system behavior as interactions between components through message exchanges

• Create lifelines to represent components, 

add messages between lifelines and 

use message labels to describe 

interactions.

• Describe client-server interactions, and 

gates connecting to root architecture 

ports.

• Simulate, and validate sequence 

diagrams to verify the system design.

https://www.mathworks.com/help/systemcomposer/ug/simulate-sequence-diagrams.html 

https://www.mathworks.com/help/systemcomposer/ug/simulate-sequence-diagrams.html
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Describe System Behavior using Activity Diagrams

Flexibly model processes with
• Serial, parallel, iterative actions

• Dynamic decisions

• Hierarchies (or sub-processes)

• Custom logic (via MATLAB functions)

Token (objects being processed)
• Support all Simulink data types

Support simulation features
• SDI

• Event animation

• Debugger (value label, breakpoint, 

step back etc.)

https://www.mathworks.com/help/systemcomposer/ug/author-activity-diagram-for-mobile-robot-example.html 

▪ Validate (via simulation) system behaviors defined as a controlled flow of actions

https://www.mathworks.com/help/systemcomposer/ug/author-activity-diagram-for-mobile-robot-example.html
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System / SW Failure Mode and Effects Analysis (FMEA)
Simulink Fault Analyzer

▪ FMEA is to support hazard identification and prevention for the ASIL level

RPN = Severity x Occurrence x Detection

• RPN (Risk Priority Number) is used to 

prioritize high-risk issues

• RPN threshold determines which 

failure mode requires corrective action
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The “System Composer Report Generator App” offers fast 

automated reports with basic customization

Select artifacts 

to report on

Select which 

parts of each 

artifact to include

Order the 

selected sections 

in the report

Generate!
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Software Detailed Design and Unit Construction

System Engineering Process Group (SYS)

SYS. 1
Requirements Elicitation

SYS. 2
System Requirements 

Analysis

SYS. 3
System Architectural 

Design

SYS. 4
System Integration and 

Integration Verification

SYS. 5
System Verification

Software Engineering Process Group (SWE)

SWE. 1
Software Requirements 

Analysis

SWE. 2
Software Architectural 

Design

SWE. 3
Software Detailed Design

and Unit Construction

SWE. 4
Software Unit Verification

SWE. 5
Software Component Verification

and Integration Verification

SWE. 6
Software Verification
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Software Detailed Design Seamlessly from Software Architecture

AUTOSAR ASW Composition

AUTOSAR ASW Component
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Software Detailed Design

AUTOSAR ASW Component

Runnable

Link to software requirement
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Code Generation Software Detailed Design

Model  Code traceability
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Detailed Design Description form Software Unit
Simulink Report Generator

• Report Explorer

• Report APIs

OR
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Software Unit Verification

System Engineering Process Group (SYS)

SYS. 1
Requirements Elicitation

SYS. 2
System Requirements 

Analysis

SYS. 3
System Architectural 

Design

SYS. 4
System Integration and 

Integration Verification

SYS. 5
System Verification

Software Engineering Process Group (SWE)

SWE. 1
Software Requirements 

Analysis

SWE. 2
Software Architectural 

Design

SWE. 3
Software Detailed Design

and Unit Construction

SWE. 4
Software Unit Verification

SWE. 5
Software Component Verification

and Integration Verification

SWE. 6
Software Verification
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Perform Static Verification of Software Units 
Simulink Check

Analysis in Model Advisor
Model Advisor Reports 
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Perform Static Verification of Software Units
Simulink Design Verifier

▪ Find design errors

• Integer overflow 

• Dead Logic

• Division by zero

• Array out-of-bounds

• Range violations

 

▪ Generate counter example to 

reproduce error
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Automation of Software Unit Testing using Simulink Test

Test Case

Assessments

and more!

MATLAB Code

Data file (baseline)

Test Assessment

Temporal Assessment

Inputs

Test Sequence

Data file (input)

and more!

Signal Editor

Stateflow

MATLAB Code

Main Model

Test Harness
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Track Verifications from Requirements
Requirements Based Testing

1. Select a requirement to link with a test case

2. Link the selected requirement in the test case
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Test Software Units – Interactive Analysis of Results

Test Results
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Test Software Units – Structural Coverage

Simulink

• Identify testing gaps

• Missing requirements 

• Unintended Functionality

Stateflow

Coverage ReportsGenerated Code
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▪ Generate test results reports

Reporting Test Results
Generate Test Results Reports

https://kr.mathworks.com/help/sltest/ug/generate-test-results-reports.html 

https://kr.mathworks.com/help/sltest/ug/generate-test-results-reports.html
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Fault Injection Testing
Simulink Fault Analyzer

▪ Ad-hoc Fault Modeling in Traditional MBD ▪ Fault Modeling using Simulink Fault Analyzer

https://kr.mathworks.com/products/simulink-fault-analyzer.html 

Fault 

Selector

Faulty Values

Select a fault 

behavior or, 

design a 

custom fault

https://kr.mathworks.com/products/simulink-fault-analyzer.html
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Perform Static Code Verification of Software Units
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Software In the Loop (SIL) Testing

Test 
Vectors

Desktop Simulation
(on PC)

Results

Model

Object Code 
Execution (on PC)

Results

Generated 
Code

Object File

Embedded
Coder

PC
Compiler

== ?

Compare

▪ Show equivalence, model to code

▪ Assess code execution time

▪ Collect code coverage
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Processor In the Loop (PIL) Testing

Test 
Vectors

Desktop Simulation
(on PC)

Results

Model

Object Code 
Execution (on target)

Results

Generated 
Code

Object File

Embedded
Coder

Cross
Compiler

== ?

Compare

▪ Verify numerical equivalence

▪ Assess target execution time

▪ Collect on target code coverage
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Automate Test Creation for Equivalence Test
Simulink Test
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Software Verification

System Engineering Process Group (SYS)

SYS. 1
Requirements Elicitation

SYS. 2
System Requirements 

Analysis

SYS. 3
System Architectural 

Design

SYS. 4
System Integration and 

Integration Verification

SYS. 5
System Verification

Software Engineering Process Group (SWE)

SWE. 1
Software Requirements 

Analysis

SWE. 2
Software Architectural 

Design

SWE. 3
Software Detailed Design

and Unit Construction

SWE. 4
Software Unit Verification

SWE. 5
Software Component Verification

and Integration Verification

SWE. 6
Software Verification
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Integrate Software Units

▪ AUTOSAR ASW composition and the code generation

AUTOSAR ASW Composition

code 

generation

AUTOSAR ASW Component
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Perform Software Integration Test
Simulink Check

AUTOSAR ASW Composition

→ Test Harness contains a battery model for feedback loop test
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Test Integrated Software – Hardware-in-the-Loop Testing

Generated codes

Battery Management Controller Model

Code Generation

Battery Model

Configure and Simulate AUTOSAR Classic Models with Simulink Real-Time 

https://kr.mathworks.com/help/autosar/ug/autosar-classic-simulink-real-time.html
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Test Integrated Software – Hardware-in-the-Loop Testing

Compatible with any CI platform: Jenkins®, GitHub® Actions, GitLab® CI Pipelines…
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Continuous Integration Workflow with Model-Based Design
Process Advisor

How do I define & deploy 

an MBD workflow?

Reproduce & debug 

build failures

Prequalify locally to 

reduce build failures

Process Advisor: CI/CD Automation for Simulink Check

✓ Graphical Front-End to Model-Based Design Build System

✓ Interactive Workflows

✓ Rapid Iteration

Integrate Process into

CI Platforms
→ auto generate pipeline

     configuration file

https://kr.mathworks.com/products/ci-cd-automation.html
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Perform Software Integration Test with Polyspace
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System Verification

System Engineering Process Group (SYS)

SYS. 1
Requirements Elicitation

SYS. 2
System Requirements 

Analysis

SYS. 3
System Architectural 

Design

SYS. 4
System Integration and 

Integration Verification

SYS. 5
System Verification

Software Engineering Process Group (SWE)

SWE. 1
Software Requirements 

Analysis

SWE. 2
Software Architectural 

Design

SWE. 3
Software Detailed Design

and Unit Construction

SWE. 4
Software Unit Verification

SWE. 5
Software Component Verification

and Integration Verification

SWE. 6
Software Verification
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Hardware-In-Loop Testing of Battery Management System

Wiring and Signal Conditioning

Automatic 

Code Generation

Battery Emulation

Testing BMS with Emulated Battery Cells

▪ Reduce testing time

▪ Test fault conditions safely

▪ Automate testing

Cell Monitoring Software

Measurement

Cell Diagnostic, 

Cell Balancing

Supervisory tasks

SOC estimation

Contactor management

Isolation monitoring

Fault detection and recovery

Thermal management

Current & power limits
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System Qualification Test in HIL

Drivetrain
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System Qualification Test in HIL
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Report Generation

Test specification 

report

Test results 

report
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Referencde MBD Process for A-SPICE® 
IEC Certification Kit

4.3.2. SYS.2 System Requirements Analysis 

Mapping A-SPICE process to 

MathWorks products
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Key Takeaways

Model-Based Design and Model-Based Systems Engineering enable:

1. Fast development and realization of system and software architecture 

and design

2. Early testing to detect errors in designs and their realization

3. Fast and efficient iterations

Develop high quality products following an

efficient Automotive SPICE® compliant process
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Reference Workflow for A-SPICE® and ISO 26262

Stakeholder

Requirements

System 

Requirements

System 

Architecture

Models

System 

Architecture 

Development

Requirement Authoring

SYSTEM LEVEL

System 

Prototyping 

& Simulation

System Level Verification

Static Arch

Analysis

Software 

Requirements

Software 

Architecture

Models

Implementation 

Models

Generated 

C/C++ Code
Object Code

Other 

C/C++ Code

Software 

Architecture

Development

Modeling
Code 

Generation

Compiling 

and Linking

SOFTWARE LEVEL

Code VerificationModel Verification

MISRA Compliance
Review and 

Static Analysis

at the model level

SIL or PIL 

Unit & Integration

Testing

MIL Unit & 

Integration Testing

Gain confidence in the generated codeDiscover design errors at design time

MISRA Compliance & 

Static Code analysis

https://www.mathworks.com/products/simulink-requirements.html
https://www.mathworks.com/products/system-composer.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/system-composer.html
https://www.mathworks.com/products/stateflow.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/embedded-coder.html
https://www.mathworks.com/products/polyspace-bug-finder.html
https://www.mathworks.com/products/polyspace-bug-finder.html
https://www.mathworks.com/products/simulink-coverage.html
https://www.mathworks.com/products/simulink-test.html
https://www.mathworks.com/products/simulink-coverage.html
https://www.mathworks.com/help/slcheck/ug/collect-model-metric-data-by-using-the-metrics-dashboard.html
https://www.mathworks.com/products/simulink-test.html
https://www.mathworks.com/products/simulink-report-generator.html
https://www.mathworks.com/products/iec-61508.html
https://kr.mathworks.com/products/autosar.html
https://kr.mathworks.com/products/autosar.html
https://www.mathworks.com/products/simulink-requirements.html
https://www.mathworks.com/products/simulink-check.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/help/slcheck/ug/collect-model-metric-data-by-using-the-metrics-dashboard.html
https://www.mathworks.com/products/simulink-check.html
https://www.mathworks.com/products/system-composer.html
https://www.mathworks.com/products/simulink-real-time.html
https://www.mathworks.com/products/simulink-test.html
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© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. 

See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may 

be trademarks or registered trademarks of their respective holders.

Thank you
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