
0

모델 기반 설계에서의 ASPICE 준수방안

류성연 프로, MathWorks

1

Development of E/E Automotive Systems

In-house

Supplier 1

Supplier N

Supplier 2

Supplier 2

Infotainment Powertrain ADASChassis and Body

Transmission Electric Motor Inverter Battery

Quality

Stakeholder

Needs

Developed

System

Capabilities of

Development

Process

Stakeholder

Needs

Developed

System

OEM1 OEM2

2

Automotive SPICE® Process Reference Model

Process ID

Process name

Process purpose

Process outcomesP
ro

c
e

s
s
 r

e
fe

re
n
c
e

m
o

d
e

l

Base Practices

P
ro

c
e

s
s
 p

e
rf

o
rm

a
n

c
e
 i
n
d

ic
a
to

rs

Output information

items

3

Today’s Agenda

System Engineering Process Group (SYS)

SYS. 1
Requirements Elicitation

SYS. 2
System Requirements

Analysis

SYS. 3
System Architectural

Design

SYS. 4
System Integration and

Integration Verification

SYS. 5
System Verification

Software Engineering Process Group (SWE)

SWE. 1
Software Requirements

Analysis

SWE. 2
Software Architectural

Design

SWE. 3
Software Detailed Design

and Unit Construction

SWE. 4
Software Unit Verification

SWE. 5
Software Component Verification

and Integration Verification

SWE. 6
Software Verification

4

For E/E Automotive Systems Development…

▪ Many automotive standards for production

ASPICE
AUTOSAR

ISO26262

Enhance efficiency

through MBD

5https://www.mathworks.com/solutions/electrification/battery-systems.html

Demo application:

https://www.mathworks.com/solutions/electrification/battery-systems.html

6

Requirements Management

System Engineering Process Group (SYS)

SYS. 1
Requirements Elicitation

SYS. 2
System Requirements

Analysis

SYS. 3
System Architectural

Design

SYS. 4
System Integration and

Integration Verification

SYS. 5
System Verification

Software Engineering Process Group (SWE)

SWE. 1
Software Requirements

Analysis

SWE. 2
Software Architectural

Design

SWE. 3
Software Detailed Design

and Unit Construction

SWE. 4
Software Unit Verification

SWE. 5
Software Component Verification

and Integration Verification

SWE. 6
Software Verification

7

Why Traceability Matters for ASPICE
Digital Thread

▪ Completeness and Consistency are the top challenges

– Completeness: all required functionality is defined

– Consistency: requirements do not conflict

▪ Ensure application is complete, fully tested, and

meets customer requirements

▪ Understand the impact of requirement changes

to implementation and test

8

Connect the Requirements Toolbox with External Sources and Tools

Import-Export

&

Roundtrips

3rd-party

Plug-Ins

Custom Solutions

supported by

MathWorks Consulting Services

Requirements Toolbox

9

Organize, Specify and Customize Requirements
Requirements Toolbox

Organize

Specify

Customize

10

Hazard and Operability (HAZOP)

Functional Safety Requirements from Concept Phase
Simulink Fault Analyzer

Item definition

HAZOP / HARA

Safety goals
determinations

Functional safety
requirements (FSR)

Technical safety
requirements (TSR)

Hazard Analysis & Risk Assessment (HARA)

Safety Goals

11

Elicit and Elaborate Requirements through Bi-directional Links

Stakeholder Requirements

System Requirements

Software Requirements

Test Requirements

to architecture

from FSR

to sys req.

to SSR

Stakeholder req.

Sys req.

TSR

12

Use Traceability Diagrams and Matrixes to Check for Consistency

and Completeness

Traceability MatrixTraceability Diagrams

13

Requirements Traceability Report
Simulink Report Generator

▪ Provides overview of model objects linked

with requirements

– Traceability to high level requirements

– Required for A-SPICE, CMMI, DO-178B, DO-254,

IEC 61508, ISO 26262 etc.

– Helps find objects with incorrect, incomplete,

ambiguous or missing requirements

14

Architecture Design

System Engineering Process Group (SYS)

SYS. 1
Requirements Elicitation

SYS. 2
System Requirements

Analysis

SYS. 3
System Architectural

Design

SYS. 4
System Integration and

Integration Verification

SYS. 5
System Verification

Software Engineering Process Group (SWE)

SWE. 1
Software Requirements

Analysis

SWE. 2
Software Architectural

Design

SWE. 3
Software Detailed Design

and Unit Construction

SWE. 4
Software Unit Verification

SWE. 5
Software Component Verification

and Integration Verification

SWE. 6
Software Verification

15

Develop Architectural Design Models with System Composer

Requirements

Functional

Logical

Physical

Item definition

16

Ensure Consistency with Tool Support for Bidirectional Traceability

Requirements Architecture Architecture Architecture

Requirements Editor Allocation Editor

17

Software Architectural Design Models with System Composer

Functional

Architecture

Logical

Architecture

Physical

Architecture

Software

Architecture

AUTOSAR ASW Composition

• AUTOSAR development with MBD

https://kr.mathworks.com/solutions/automotive/standards/autosar.html

18

Analyze System Architecture with Autogenerated Custom Views

19

Describe Dynamic Behavior using Sequence Diagram

▪ Describe system behavior as interactions between components through message exchanges

• Create lifelines to represent components,

add messages between lifelines and

use message labels to describe

interactions.

• Describe client-server interactions, and

gates connecting to root architecture

ports.

• Simulate, and validate sequence

diagrams to verify the system design.

https://www.mathworks.com/help/systemcomposer/ug/simulate-sequence-diagrams.html

https://www.mathworks.com/help/systemcomposer/ug/simulate-sequence-diagrams.html

20

Describe System Behavior using Activity Diagrams

Flexibly model processes with
• Serial, parallel, iterative actions

• Dynamic decisions

• Hierarchies (or sub-processes)

• Custom logic (via MATLAB functions)

Token (objects being processed)
• Support all Simulink data types

Support simulation features
• SDI

• Event animation

• Debugger (value label, breakpoint,

step back etc.)

https://www.mathworks.com/help/systemcomposer/ug/author-activity-diagram-for-mobile-robot-example.html

▪ Validate (via simulation) system behaviors defined as a controlled flow of actions

https://www.mathworks.com/help/systemcomposer/ug/author-activity-diagram-for-mobile-robot-example.html

21

System / SW Failure Mode and Effects Analysis (FMEA)
Simulink Fault Analyzer

▪ FMEA is to support hazard identification and prevention for the ASIL level

RPN = Severity x Occurrence x Detection

• RPN (Risk Priority Number) is used to

prioritize high-risk issues

• RPN threshold determines which

failure mode requires corrective action

22

The “System Composer Report Generator App” offers fast

automated reports with basic customization

Select artifacts

to report on

Select which

parts of each

artifact to include

Order the

selected sections

in the report

Generate!

23

Software Detailed Design and Unit Construction

System Engineering Process Group (SYS)

SYS. 1
Requirements Elicitation

SYS. 2
System Requirements

Analysis

SYS. 3
System Architectural

Design

SYS. 4
System Integration and

Integration Verification

SYS. 5
System Verification

Software Engineering Process Group (SWE)

SWE. 1
Software Requirements

Analysis

SWE. 2
Software Architectural

Design

SWE. 3
Software Detailed Design

and Unit Construction

SWE. 4
Software Unit Verification

SWE. 5
Software Component Verification

and Integration Verification

SWE. 6
Software Verification

24

Software Detailed Design Seamlessly from Software Architecture

AUTOSAR ASW Composition

AUTOSAR ASW Component

25

Software Detailed Design

AUTOSAR ASW Component

Runnable

Link to software requirement

26

Code Generation Software Detailed Design

Model Code traceability

27

Detailed Design Description form Software Unit
Simulink Report Generator

• Report Explorer

• Report APIs

OR

28

Software Unit Verification

System Engineering Process Group (SYS)

SYS. 1
Requirements Elicitation

SYS. 2
System Requirements

Analysis

SYS. 3
System Architectural

Design

SYS. 4
System Integration and

Integration Verification

SYS. 5
System Verification

Software Engineering Process Group (SWE)

SWE. 1
Software Requirements

Analysis

SWE. 2
Software Architectural

Design

SWE. 3
Software Detailed Design

and Unit Construction

SWE. 4
Software Unit Verification

SWE. 5
Software Component Verification

and Integration Verification

SWE. 6
Software Verification

29

Perform Static Verification of Software Units
Simulink Check

Analysis in Model Advisor
Model Advisor Reports

30

Perform Static Verification of Software Units
Simulink Design Verifier

▪ Find design errors

• Integer overflow

• Dead Logic

• Division by zero

• Array out-of-bounds

• Range violations

▪ Generate counter example to

reproduce error

31

Automation of Software Unit Testing using Simulink Test

Test Case

Assessments

and more!

MATLAB Code

Data file (baseline)

Test Assessment

Temporal Assessment

Inputs

Test Sequence

Data file (input)

and more!

Signal Editor

Stateflow

MATLAB Code

Main Model

Test Harness

32

Track Verifications from Requirements
Requirements Based Testing

1. Select a requirement to link with a test case

2. Link the selected requirement in the test case

33

Test Software Units – Interactive Analysis of Results

Test Results

34

Test Software Units – Structural Coverage

Simulink

• Identify testing gaps

• Missing requirements

• Unintended Functionality

Stateflow

Coverage ReportsGenerated Code

35

▪ Generate test results reports

Reporting Test Results
Generate Test Results Reports

https://kr.mathworks.com/help/sltest/ug/generate-test-results-reports.html

https://kr.mathworks.com/help/sltest/ug/generate-test-results-reports.html

36

Fault Injection Testing
Simulink Fault Analyzer

▪ Ad-hoc Fault Modeling in Traditional MBD ▪ Fault Modeling using Simulink Fault Analyzer

https://kr.mathworks.com/products/simulink-fault-analyzer.html

Fault

Selector

Faulty Values

Select a fault

behavior or,

design a

custom fault

https://kr.mathworks.com/products/simulink-fault-analyzer.html

37

Perform Static Code Verification of Software Units

38

Software In the Loop (SIL) Testing

Test
Vectors

Desktop Simulation
(on PC)

Results

Model

Object Code
Execution (on PC)

Results

Generated
Code

Object File

Embedded
Coder

PC
Compiler

== ?

Compare

▪ Show equivalence, model to code

▪ Assess code execution time

▪ Collect code coverage

39

Processor In the Loop (PIL) Testing

Test
Vectors

Desktop Simulation
(on PC)

Results

Model

Object Code
Execution (on target)

Results

Generated
Code

Object File

Embedded
Coder

Cross
Compiler

== ?

Compare

▪ Verify numerical equivalence

▪ Assess target execution time

▪ Collect on target code coverage

40

Automate Test Creation for Equivalence Test
Simulink Test

41

Software Verification

System Engineering Process Group (SYS)

SYS. 1
Requirements Elicitation

SYS. 2
System Requirements

Analysis

SYS. 3
System Architectural

Design

SYS. 4
System Integration and

Integration Verification

SYS. 5
System Verification

Software Engineering Process Group (SWE)

SWE. 1
Software Requirements

Analysis

SWE. 2
Software Architectural

Design

SWE. 3
Software Detailed Design

and Unit Construction

SWE. 4
Software Unit Verification

SWE. 5
Software Component Verification

and Integration Verification

SWE. 6
Software Verification

42

Integrate Software Units

▪ AUTOSAR ASW composition and the code generation

AUTOSAR ASW Composition

code

generation

AUTOSAR ASW Component

43

Perform Software Integration Test
Simulink Check

AUTOSAR ASW Composition

→ Test Harness contains a battery model for feedback loop test

44

Test Integrated Software – Hardware-in-the-Loop Testing

Generated codes

Battery Management Controller Model

Code Generation

Battery Model

Configure and Simulate AUTOSAR Classic Models with Simulink Real-Time

https://kr.mathworks.com/help/autosar/ug/autosar-classic-simulink-real-time.html

45

Test Integrated Software – Hardware-in-the-Loop Testing

Compatible with any CI platform: Jenkins®, GitHub® Actions, GitLab® CI Pipelines…

46

Continuous Integration Workflow with Model-Based Design
Process Advisor

How do I define & deploy

an MBD workflow?

Reproduce & debug

build failures

Prequalify locally to

reduce build failures

Process Advisor: CI/CD Automation for Simulink Check

✓ Graphical Front-End to Model-Based Design Build System

✓ Interactive Workflows

✓ Rapid Iteration

Integrate Process into

CI Platforms
→ auto generate pipeline

 configuration file

https://kr.mathworks.com/products/ci-cd-automation.html

47

Perform Software Integration Test with Polyspace

48

System Verification

System Engineering Process Group (SYS)

SYS. 1
Requirements Elicitation

SYS. 2
System Requirements

Analysis

SYS. 3
System Architectural

Design

SYS. 4
System Integration and

Integration Verification

SYS. 5
System Verification

Software Engineering Process Group (SWE)

SWE. 1
Software Requirements

Analysis

SWE. 2
Software Architectural

Design

SWE. 3
Software Detailed Design

and Unit Construction

SWE. 4
Software Unit Verification

SWE. 5
Software Component Verification

and Integration Verification

SWE. 6
Software Verification

49

Hardware-In-Loop Testing of Battery Management System

Wiring and Signal Conditioning

Automatic

Code Generation

Battery Emulation

Testing BMS with Emulated Battery Cells

▪ Reduce testing time

▪ Test fault conditions safely

▪ Automate testing

Cell Monitoring Software

Measurement

Cell Diagnostic,

Cell Balancing

Supervisory tasks

SOC estimation

Contactor management

Isolation monitoring

Fault detection and recovery

Thermal management

Current & power limits

50

System Qualification Test in HIL

Drivetrain

51

System Qualification Test in HIL

52

Report Generation

Test specification

report

Test results

report

53

Referencde MBD Process for A-SPICE®
IEC Certification Kit

4.3.2. SYS.2 System Requirements Analysis

Mapping A-SPICE process to

MathWorks products

54

Key Takeaways

Model-Based Design and Model-Based Systems Engineering enable:

1. Fast development and realization of system and software architecture

and design

2. Early testing to detect errors in designs and their realization

3. Fast and efficient iterations

Develop high quality products following an

efficient Automotive SPICE® compliant process

55

Reference Workflow for A-SPICE® and ISO 26262

Stakeholder

Requirements

System

Requirements

System

Architecture

Models

System

Architecture

Development

Requirement Authoring

SYSTEM LEVEL

System

Prototyping

& Simulation

System Level Verification

Static Arch

Analysis

Software

Requirements

Software

Architecture

Models

Implementation

Models

Generated

C/C++ Code
Object Code

Other

C/C++ Code

Software

Architecture

Development

Modeling
Code

Generation

Compiling

and Linking

SOFTWARE LEVEL

Code VerificationModel Verification

MISRA Compliance
Review and

Static Analysis

at the model level

SIL or PIL

Unit & Integration

Testing

MIL Unit &

Integration Testing

Gain confidence in the generated codeDiscover design errors at design time

MISRA Compliance &

Static Code analysis

https://www.mathworks.com/products/simulink-requirements.html
https://www.mathworks.com/products/system-composer.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/system-composer.html
https://www.mathworks.com/products/stateflow.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/embedded-coder.html
https://www.mathworks.com/products/polyspace-bug-finder.html
https://www.mathworks.com/products/polyspace-bug-finder.html
https://www.mathworks.com/products/simulink-coverage.html
https://www.mathworks.com/products/simulink-test.html
https://www.mathworks.com/products/simulink-coverage.html
https://www.mathworks.com/help/slcheck/ug/collect-model-metric-data-by-using-the-metrics-dashboard.html
https://www.mathworks.com/products/simulink-test.html
https://www.mathworks.com/products/simulink-report-generator.html
https://www.mathworks.com/products/iec-61508.html
https://kr.mathworks.com/products/autosar.html
https://kr.mathworks.com/products/autosar.html
https://www.mathworks.com/products/simulink-requirements.html
https://www.mathworks.com/products/simulink-check.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/help/slcheck/ug/collect-model-metric-data-by-using-the-metrics-dashboard.html
https://www.mathworks.com/products/simulink-check.html
https://www.mathworks.com/products/system-composer.html
https://www.mathworks.com/products/simulink-real-time.html
https://www.mathworks.com/products/simulink-test.html

56

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.

See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may

be trademarks or registered trademarks of their respective holders.

Thank you

	Slide 0
	Slide 1: Development of E/E Automotive Systems
	Slide 2: Automotive SPICE® Process Reference Model
	Slide 3: Today’s Agenda
	Slide 4: For E/E Automotive Systems Development…
	Slide 5
	Slide 6: Requirements Management
	Slide 7: Why Traceability Matters for ASPICE Digital Thread
	Slide 8: Connect the Requirements Toolbox with External Sources and Tools
	Slide 9: Organize, Specify and Customize Requirements Requirements Toolbox
	Slide 10: Functional Safety Requirements from Concept Phase Simulink Fault Analyzer
	Slide 11: Elicit and Elaborate Requirements through Bi-directional Links
	Slide 12: Use Traceability Diagrams and Matrixes to Check for Consistency and Completeness
	Slide 13: Requirements Traceability Report Simulink Report Generator
	Slide 14: Architecture Design
	Slide 15: Develop Architectural Design Models with System Composer
	Slide 16: Ensure Consistency with Tool Support for Bidirectional Traceability
	Slide 17: Software Architectural Design Models with System Composer
	Slide 18
	Slide 19: Describe Dynamic Behavior using Sequence Diagram
	Slide 20: Describe System Behavior using Activity Diagrams
	Slide 21: System / SW Failure Mode and Effects Analysis (FMEA) Simulink Fault Analyzer
	Slide 22: The “System Composer Report Generator App” offers fast automated reports with basic customization
	Slide 23: Software Detailed Design and Unit Construction
	Slide 24: Software Detailed Design Seamlessly from Software Architecture
	Slide 25: Software Detailed Design
	Slide 26: Code Generation Software Detailed Design
	Slide 27: Detailed Design Description form Software Unit Simulink Report Generator
	Slide 28: Software Unit Verification
	Slide 29: Perform Static Verification of Software Units Simulink Check
	Slide 30: Perform Static Verification of Software Units Simulink Design Verifier
	Slide 31: Automation of Software Unit Testing using Simulink Test
	Slide 32: Track Verifications from Requirements Requirements Based Testing
	Slide 33: Test Software Units – Interactive Analysis of Results
	Slide 34: Test Software Units – Structural Coverage
	Slide 35: Reporting Test Results Generate Test Results Reports
	Slide 36: Fault Injection Testing Simulink Fault Analyzer
	Slide 37: Perform Static Code Verification of Software Units
	Slide 38: Software In the Loop (SIL) Testing
	Slide 39: Processor In the Loop (PIL) Testing
	Slide 40: Automate Test Creation for Equivalence Test Simulink Test
	Slide 41: Software Verification
	Slide 42: Integrate Software Units
	Slide 43: Perform Software Integration Test Simulink Check
	Slide 44: Test Integrated Software – Hardware-in-the-Loop Testing
	Slide 45: Test Integrated Software – Hardware-in-the-Loop Testing
	Slide 46: Continuous Integration Workflow with Model-Based Design Process Advisor
	Slide 47: Perform Software Integration Test with Polyspace
	Slide 48: System Verification
	Slide 49: Hardware-In-Loop Testing of Battery Management System
	Slide 50: System Qualification Test in HIL
	Slide 51: System Qualification Test in HIL
	Slide 52: Report Generation
	Slide 53: Referencde MBD Process for A-SPICE® IEC Certification Kit
	Slide 54: Key Takeaways
	Slide 55: Reference Workflow for A-SPICE® and ISO 26262
	Slide 56

